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Supplementary Text: Details of stochastic simulations.
[bookmark: simulation-implementation-details]Stochastic simulations for change in word variants in  subpopulations () were performed to obtain (i) Bray–Curtis dissimilarity between each pair of subpopulations regarding how the same concept is called by individuals from the two subpopulations (Figures 4 and S3), and (ii) variant age (Figure 5). At every time step,  samples per subpopulation were taken. In the following, we call a data set from subpopulation  at generation  as data . Variant persistent identification number (PID) of an element in data , say , () was determined through the following process: First, a subpopulation serving as information source was chosen probabilistically according to the -th row of the weight matrix . Suppose that subpopulation  was chosen as the source. Then, one of transmission and innovation events occurred with probability  and , respectively, where . In the transmission event, a learner from subpopulation  at generation  randomly chose an element from data , yielding . In the mutation event, a speaker was assumed to have made lexical innovation before learning. In this case, the learner acquired a novel variant and , where  was the current maximum PID. Note that the maximum PID infinitely increases under this rule. In addition, a mapping table that linked PIDs existing at generation  and variant ages was made. Age of a novel variant was set to zero while that of variant existing at generation  was increased by one unit.
Equilibrium probability distributions of (i) and (ii) for each parameter set were estimated by sampling data repeatedly in one long trial after the system had reached its stochastic stationary state. A time step interval between the ()-th sampling and -th sampling, , was chosen randomly from {1000, 1001, …, 1500}. Intervals were chosen sequentially until the required total time steps  exceeded . Therefore, expected number of samplings was 8,000. The intervals were determined independently in each long run, and thus we should note that there are slight differences in data size between simulations. The simulation was started with every data element for generation 0 possessing a unique variant PID (one of ) with age zero. To minimize the influence of initial state, or, to assure sampling was performed within the stationary state, the first 100 samples (obtained by approximately -th time steps) were excluded from the following analysis. Every computation was performed using Python (version 3.11.6) and random number generator in NumPy (version 2.3.4). Codes and data are available at the URL described in the main text.
[bookmark: OLE_LINK18][bookmark: OLE_LINK33]The above, averaging-over-time approach is justified when the system has a unique stationary distribution. Such a unique stationary distribution is known to exist in a Markov chain system with Ergodicity (Norris, 1997). A Markov chain has Ergodicity if it satisfies (1) irreducibility, (2) aperiodicity, and (3) positive recurrence. The original system tracking PIDs does not have Ergodicity. However, we can prove that the system, after slight revisions in two respects, exhibits ergodicity. First, we utilize session identification numbers (SIDs) in place of PIDs. SIDs at a given time step are assigned to all variants present at that time step, sequentially starting from 1, according to a predefined rule. Note that both PIDs and SIDs result in the same Bray–Curtis dissimilarity between subpopulations. In this proof, we apply the following rule: (i) assign SID 1 to the variant of the first element of subpopulation 1, (ii) assign SID 2 to the second element of subpopulation 1 if the first and second elements are different variants, and so on. Note that there are at most  SIDs for any time step unlike unlimited PIDs. Second, we restrict the state space of the system. Define a state as the combination of the SID data set  and the SID–age mapping table. The state space  is defined as the set of recurrent states in the system. In the following, we derive each of the three conditions for Ergodicity based on the fact that the system has a special state reachable from any state with positive probability in finite time. Let  be defined as the state in which (i) there are  types of SIDs in each subpopulation (i.e., no element pairs in the same subpopulation share the same SID), (ii) data set of subpopulation  consists of the same SID combination as that of subpopulation , and (iii) all variants in subpopulation  share the same age of  ( as defined in the main text). Then, there is a transition path from any given state  in  time steps as follows: At every of the  steps, each learner from subpopulation  receives a novel variant. At time step , each learner from subpopulation  receives a variant without innovation and without overlap from the neighboring, center side subpopulation so that there are  distinct variants in data . The transition probability at each step and total time steps (i.e., ) depend only on the model parameters and population structure, not on .
First, we demonstrate irreducibility using the reachability to  independent from the initial state. Consider two states . By the property of recurrent states, if  can be reached from , then  must be reached from . As mentioned above, since  can be reached from any , by the definition of recurrent states, the reverse transition  is assured to occur with a positive probability. This allows any pair of  and  to communicate with each other via  (), making the system irreducible. Second, we apply the theorem that an irreducible Markov chain is aperiodic if at least one state has a self-loop (Norris, 1997). In the present model, the final step of the -step path leading any state to  (see above) brings the system from  back to itself in one step. The system is thus aperiodic. Third, positive recurrence follows from the fact that there exists a positive lower bound, independent of the initial state, on the probability of reaching . Consequently, the probability of not having visited  decreases geometrically over time, which implies that the mean recurrence time is finite. Therefore, the system is positive recurrent. From the above, this system is Ergodic and converges to a unique stationary distribution regardless of the initial state.


[bookmark: OLE_LINK32][image: ]
Figure S1. Parameter space for peripheral distribution emergence using concept-wise Bray–Curtis dissimilarity for (A) the population with neither Centralized Lexical Innovation (CLI) nor Unidirectional Transmission (UT), (B) that with UT/without CLI, (C) with CLI/ without UT, and (D) with both CLI and UT. Horizontal and vertical axes show data size  (log-scaled) and migration rate  (log-scaled), respectively (). Colors indicate the degree of peripheral distribution, defined as the proportion of subpopulation pairs showing peripheral pattern among all non-center subpopulation pairs. Dissimilarity between each pair was measured by average for concept-wise Bray–Curtis dissimilarity. Red borders in (B, C) indicate parameter regions in which peripheral distribution is formed both with Centralized Lexical Innovation (CLI) without Unidirectional Transmission (UT) and with UT without CLI. The parameter dependency patterns are largely consistent with those observed using Nei’s genetic distance (Figure 2 in the main text), indicating that the emergence of peripheral distribution depends primarily on  independent of distance metrics. Simulation parameters: , , , . 
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Figure S2. Linguistic distance between a pair of subpopulations obtained using (A) a parameter set with which peripheral distribution is formed with Unidirectional Transmission (UT; , , , and ), and (B) a parameter set in which peripheral distribution is formed with Centralized Lexical Innovation (CLI; , , , and ). Rows represent the four experimental conditions; from top to bottom, with neither CLI nor UT, with UT/without CLI, with CLI/without UT, with both CLI and UT. The first column displays heatmaps of linguistic distance ranks between subpopulations. For each subpopulation  (represented by a row), all other subpopulation  (columns) are ranked based on their linguistic distance from ; a lower rank indicates a closer linguistic relationship. Black-bordered cells mark the column corresponding to the central subpopulation. Red-bordered cells highlight  that are geographically more distant from  than the central subpopulation is, yet are linguistically closer. The second, third, fourth, and fifth columns correspond to the index of the first one of the pair of subpopulations , , , and , respectively. Each panel in those columns is the line chart depicting the distance between subpopulations  and , with the horizontal axis representing the index of the second subpopulation  and the vertical axis representing log-scaled linguistic distance  using transformation . Vertical dashed lines indicate the position of the cultural center (subpopulation 4), and horizontal dashed lines show the linguistic distance between subpopulation  and the center (). Peripheral distribution is said to be formed if , , or  is less than . Note that the line charts for , , and  can be obtained by lateral inversion of those for , , and , respectively.
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Figure S3. Joint frequency distribution of concept-wise Bray–Curtis dissimilarities for (A) the population with neither Centralized Lexical Innovation (CLI) nor Unidirectional Transmission (UT), (B) that with UT/without CLI, (C) with CLI/ without UT, and (D) with both CLI and UT. The horizontal axes indicate dissimilarity between subpopulation 1 and the cultural center (subpopulation 4; ), and the vertical axes indicate that between subpopulations 1 and 5 (). The colors represent the frequency of each dissimilarity pair occurring during the simulation under all four conditions. The diagonal components, which are greater when the concept-wise dissimilarity between subpopulations 4 and 5, , equals zero for a greater number of concepts, are actually prominent across the four CLI/UT conditions. However, different conditions yield different distribution patterns along the diagonal as follows: CLI tends to shift both dissimilarities toward 0 (complete similarity; ), while UT reduces the occurrence of dissimilarity 1 (complete divergence; ). Results for the population with both CLI and UT indicate that these effects are additive. Simulation parameters: , , , .
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