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Languages evolve through diffusion processes
similarly to biological evolution, forming linguistic
clusters based on geographic proximity. A few
mathematical modeling studies have tested the
classical theory on the formation of a peripheral
distribution of dialects, which originally assumed two
conditions: (i) new words are innovated exclusively at
a cultural center and (ii) these words spread outward
due to the prestige of the cultural center. However, it
is known that these special conditions are often not
met. We examined whether and how the presence or
absence of each condition influences the outcome
using an extended Bayesian Iterated Learning
Model. Our mathematical analyses revealed that
peripheral distributions can emerge not only when
both conditions are present but also when one of the
two is absent. Furthermore, the satisfaction of one or
both conditions in a population can be predicted by
investigating the word age distribution there.
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Introduction

There is variation in languages, more specifically variation
in linguistic forms such as morphemes, words, and
grammars, at a wide range of levels (from global to local).
Similarity between languages typically correlates with
geographic closeness (De Gregorio et al., 2024). This
would reflect the process by which a new variant generated
in one subpopulation spreads between subpopulations,
similar to the gene flow observed in biological evolution
(Bromham, 2025). As a result, a linguistic cluster is
formed by geographically close languages.

However, some linguistic distributions deviate
from this general pattern of geographic clustering. An
example of such a distribution pattern is the “peripheral
distribution” proposed in the theory of Hogen Shiikenron
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(theory of peripheral distribution of dialectal forms;
Yanagita, 1930). The theory is originally based on two
assumptions: (1) new words are created exclusively at a
cultural center (hereafter referred to as Centralized Lexical
Innovation; CLI), and (2) information on linguistic form
flows unidirectionally from the center side to the peripheral
side probably because people in surrounding areas
perceive a “prestige of center” for a word introduced from
the center side and accept it (Unidirectional Transmission;
UT). These assumptions explain how new words spread
outward from the center, forming a peripheral distribution
of each word, with older ones further from the cultural
center.

So far, several studies have quantitatively evaluated the
validity of the verbal argument by Yanagita (1930). Lizana
et al. (2011) developed a mathematical model incorporating
both of the aforementioned key conditions to obtain the
peripheral distribution in their model. Takahashi & Thara
(2020) found that the concentric distribution can be formed
only with the condition of CLI.

However, language change does not necessarily
conform to CLI, and there are examples of linguistic
innovations originating in peripheral regions and
subsequently diffusing back into cultural centers. For
instance, the Japanese word uzattai, originally used only
in the western suburbs of Tokyo, later diffused inward
to central Tokyo and eventually nationwide, providing
evidence of linguistic innovation flowing from peripheral
regions into cultural centers (Inoue, 2010). Therefore, it
is worth investigating whether peripheral distributions
emerge even when the center does not play a special role in
lexical innovation.

To address this gap, we developed an extended Iterated
Learning Model that can independently test each of the
two proposed conditions. By examining scenarios in which
CLI and UT operate separately or together, we clarify the
necessary conditions for peripheral distribution formation
and provide insights into the fundamental mechanisms
governing language change across geographic space.

Model
The present model is based on the previous, Bayesian
Iterated Learning Model (ILM; Reali & Griffiths, 2010).
The model considers a discrete-generation population, in
which individuals (agents) have two life stages: learner and
speaker stages. At the learner stage, they acquire linguistic
knowledge by referring to data produced by individuals
in the previous generation. At the speaker stage, they
produce data, which can be observed by individuals in the
next generation. Every individual born at time ¢ serves as
learner and speaker at time 7 and 7 + 1, respectively.

The learning process is formalized as Bayesian
inference (Kirby, 2001; Kirby et al., 2007). Suppose that
there are K variants in linguistic form (such as sounds,

words, or grammatical constructions) v, v Y
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and consider two types of K-dimensional vectors: x =
[x,x,, ... ,xJand 0 =1[6,0,, ..., 0], where x, and 0,
denote sampled frequency and the estimated probability,
respectively, of a variant v,. The sum of xy, X, iS
fixed to N. The parameter N represents total times of valid
observation and thus would be correlated with size or
activity level of the population. The inferred distribution
of 0 after receiving data x, p (@ | x) is calculated as

p(x10)p(6)

p(01x) =—fp(x|0)p(9)d0'

®
where p (0) is the prior distribution, indicating the innate
biases common in the focal population. The likelihood p (x
| 0) is a multinomial distribution, which is the probability
of observed data x from the parameter . We assume
that the prior distribution is a symmetric K-dimensional
Dirichlet distribution, which means that individuals have
no preference for a specific form. The distribution is
determined only by parameter o and K:

a

K a_
vo [ | o @

The parameter o moderates the learner’s preference for
diversity: the larger /K value represents a tendency to
retain the greater number of variants. Under the above
assumptions, probability that a variant v, is produced is
calculated as

X+ g
N+a’

(3)

See Reali & Griffiths (2010) for derivation of equation (3).
We focus on the situation that mutation always produces
a variant that has never been observed, in which case
every mutation can be called lexical innovation. The
number of variants K is potentially infinite, which yields
an infinite dimensional Dirichlet distribution for the prior
distribution. The probability that an already existing
variant v, is reproduced and that of lexical innovation is
given by

Xk
) 4
N+« (42)
a
N+a’ (4)

respectively. In this limit every mutation provokes lexical
innovation, and the probability of mutation is correlated
with the parameter a. Note that the Dirichlet prior does
not allow the extreme case of @ = 0. However, equation
(2) approaches the Haldane prior [[K_; 8;' as a — 0.
In this study, we define that the prior follows Dirichlet
distribution when a > 0 and Haldane distribution when
a = 0. In the case o = 0, the posterior distribution p (@ |
x) follows  JT_,6;*"", and the production probability
for variant v, simplifies to x,/N. In this case, the model
is equivalent to the Wright-Fisher neutral model without
mutation in genetics.

We further extended the model to describe dynamics
in a structured population. In the present model, an
individual belongs to one of M. subpopulations throughout
his/her lifetime. A learner probabilistically chooses a
subpopulation from which he/she samples a variant.
We assume that the size of data pool produced by the
speakers in each subpopulation is sufficiently large,
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Figure 1
Schematic of the Iterated Learning Model (ILM)

Generation t

Generation t — 1

Note. In each generation, a learner observes linguistic data from a
speaker of the previous generation. The learner updates its internal
hypothesis based on this data via Bayesian inference. It then
becomes the speaker for the subsequent generation, producing data
from its updated hypothesis.

allowing to regard the data received by each learner to be
independently produced. The probability of receiving an
already produced variant v, is given by

M x(j) t—1
Z Wi L)_ (5)
j=1 N+ aW)

where x,(cj)(t —1) is the number of times that v_is
produced by speakers born at time # — 1 in subpopulation j,
oY, is the value of a (innovation rate) shared by individuals
in subpopulation j, and w, is the probability that a learner
in subpopulation i adopts a variant produced by a speaker
in subpopulation j. the probability of receiving a novel
variant is given by

M a®
W’ i . 6
2, Wi ©

To examine the effects of specific conditions on the
formation of peripheral distribution, we considered four
scenarios, each of which was with or without the following
two conditions:

Centralized Lexical Innovation (CLI)
New words are innovated exclusively at the cultural center.

Unidirectional Transmission (UT)

Learners can accept linguistic information provided by
an outgroup speaker only when the speaker comes from
the subpopulation on the center side for some reason(s)
(e.g., individuals in surrounding areas perceive a “prestige
of center” for a word introduced from the center side),
resulting in unidirectional information flow from center to
periphery.

We analyzed a structured population consisting of M
subpopulations (subpopulation 1, 2, ... , M, where we
assign an odd number to M) that are arranged on a one-
dimensional lattice. The following numerical examples
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were obtained with seven subpopulations (i.e., M = 7). One
subpopulation, ¢, is defined to serve as the cultural center.
Here we assumed that it is the same as the geometric center
(i.e., c = (M + 1)/2 = 4). Inter-subpopulation interaction
is restricted to occur between immediate neighbors. In
a population without CLI, a® = « for all i is assumed. In
a population with CLI, a© = a and a® = 0 for i # ¢ are
assumed. In a population without UT, the interaction is
symmetric: learners in subpopulation i/ can receive data
from speakers in both of the neighboring subpopulations
i—1andi+ 1, with an adjustment at the boundaries. The
interaction weight matrix is defined as follows:

m
1-—ifi=j=1lori=j=M

1-m, ifi=jandl1<i<M

Wy ={m , @)
= ifli—jl=1
2 if i —jl
0, otherwise

where m represents relative magnitude of interaction
(0 < m < 1; here we restrict the range to 0 <m < 1/2 so
that a learner is most affected by speakers in the same
subpopulation). With UT, there is asymmetry in the
interaction. The weight matrix in this case is defined as:

1, ifi=jandi=c
1-m, ifi=jandi#c
Wi =1{m, iff<candi=j—-1, (8)
m, ifj>candi=j+1
0, otherwise

with which learners do not receive data from the
peripheral-side subpopulation. Note that, in this case,
learners in subpopulation ¢ receive data exclusively from
speakers in the same subpopulation (c) regardless of the
value of m.

A peripheral distribution is said to be realized
when at least one non-center subpopulation i has a non-
center partner ;j that exists beyond the center ¢ and is
linguistically closer to i than ¢ is. To measure linguistic
dissimilarity between subpopulations, we apply Nei’s
standard genetic distance (Nei, 1972). In this study, we
refer to this metric as the linguistic distance. The Nei’s
distance is defined as:

Jij
where J; is the probability that two randomly chosen data

elements—one from subpopulation 7 and the other from
subpopulation j—are copies of the same variant:

K o s
x® 5

ZLL
N N |

k=1

D;; = —In (C)]

Jij =E (10)

Note that the sampling is with replacement when i = ;. To
obtain the steady-state values of J we derive the set of
difference equations describing their temporal dynamics.
For each pair of subpopulations i # j, we have:

Jt+1) = Z z Wi Wi (1 = ) (X — )] (0), 11D

k L

where u, = a®/(N + a) is the probability that a novel
variant is produced in subpopulation k. The term inside the
summation describes the probability that (i) parents of the
first and second samples are elements of subpopulation
and /, respectively, at time ¢(W,, Wﬂ), (i1) those parents are
copies of an identical variant (J,,(?), and (iii) no innovation
has occurred in the course of learning ((1 —u,) (1 —,)). For

Hachimaru & Seki LEBS Vol. 17 No. 1 (2026) 1-7

Necessary conditions for peripheral distribution of dialect

i = J, the equation includes an additional term accounting
for self-similarity:

1 1
Jule+ 1 =+ (1 _N)Z Zwik Wl = (1 = @) ®. (12)

The first term of the right-hand side in equation (12)
represents the probability that the same element is sampled
twice. When different elements are sampled, the variant
type of each element is determined in the same manner
as equation (11). By solving this system of equations
algebraically, we obtain the steady-state values of Iy which
can then be used to compute linguistic distances between
subpopulations.

We additionally employed the Bray—Curtis
dissimilarity (Bray & Curtis, 1957) to verify robustness
and investigate the frequency distribution of concept-wise
distance. It is defined as:

@ 02
o | — %! |

dBC (x(i)' x(i)) = 2N

(13)

All numerical simulations and mathematical analyses
were implemented using Python 3.11.6. The core libraries
utilized for computation included NumPy (version 2.3.4)
and SciPy (version 1.16.3).

Results

To systematically examine the conditions under which
peripheral distribution can be formed, we analyzed the
parameter space of the innovation rate a, migration
rate of linguistic form m, and data size N (Figure 2).
With neither Centralized Lexical Innovation (CLI) nor
Unidirectional Transmission (UT), no parameter sets
yield peripheral distribution (Figure 2A—E). When both
are present, peripheral distribution emerges across all
explored parameters (Figure 2P-T). For the single-
condition cases (Figure 2F-0), when a << 1 and N >> 1,
the boundaries depend solely on mN (appearing as lines
with slope —1 in the log-log plot), with the two conditions
exhibiting opposite dependencies: with CLI and without
UT, peripheral distribution is observed when mN is below
a threshold (Figure 2K—0). With UT and without CLI,
peripheral distribution is found in the parameter region in
which mN exceeds a threshold (Figure 2F-J). For both of
the single-condition scenarios, smaller a values expand the
parameter regions where peripheral distribution emerges.
The robustness of the above findings was confirmed by
Monte-Carlo simulations using Bray—Curtis dissimilarity
for between-subpopulation similarity (Supplementary
Figure S1).

Further numerical examination revealed that different
CLI/UT conditions form different linguistic distance
patterns (Figure 3). Although peripheral distribution can
be formed with either one of CLI and UT, the underlying
mechanisms generate qualitatively different distance
patterns (compare Figure 3C and 3F). In contrast, when
both conditions are present simultaneously, the resulting
patterns show similar characteristics regardless of which
mechanism dominates (Figure 3D and 3H). With neither
condition, linguistic distance correlates with geographic
distance as was well investigated by Nei (1972), and no
peripheral distribution was observed (Figure 3A and
3E). The effects of CLI and UT are not simply additive
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(Figure 3D and 3H). Detailed distance patterns from other
subpopulations are provided in Supplementary Figure S2.

Figure 2
Parameter space for peripheral distribution emergence
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Note. Rows represent the four conditions: (A, E, I, M, Q) neither
CLI nor UT; (B, F, J, N, R) with UT; (C, G, K, O, S) with CLI; and
(D, H, L, P, T) with both. Columns correspond to the parameter a.
Horizontal and vertical axes show data size N and migration rate
m, respectively (log scale). Colored regions indicate the degree of
peripheral distribution (defined as the proportion of subpopulation
pairs showing peripheral pattern: pairs where a non-central
subpopulation b finds a subpopulation » on the opposite side of the
center linguistically closer than the center itself). Red borders in (B,
F, C, G) indicate parameter regions in which peripheral distribution
is formed both with Centralized Lexical Innovation (CLI) without
Unidirectional Transmission (UT) and with UT without CLI. When
neither condition is present, no parameter combination yields
peripheral distribution; when both conditions are present, peripheral
distribution emerges across all explored parameters. For the single-
condition cases, when a << 1 and N >> 1, the boundaries depend
solely on mN (appearing as lines with slope —1 in the log-log plot),
with the two conditions exhibiting opposite dependencies: CLI
produces peripheral distribution when mN is below a threshold,
while UT produces it when mN exceeds a threshold. For both single-
condition scenarios, smaller o values expand the parameter regions
where peripheral distribution emerges. Parameter ranges: log, a €
[-15, 5] with step size 5, log, m € [-21, —1] with step size 0.25, log,
N € [0, 20] with step size 1, M =7.

To clarify the distinct mechanisms by which CLI
and UT generate peripheral distribution, we obtained
frequency distribution of concept-wise Bray—Curtis
dissimilarities (Supplementary Text). Here shown are the
frequency distributions for two representative pairs: one
between subpopulation 1 and the cultural center 4, and the
other between subpopulation 1 and subpopulation 5 (Figure
4). With neither condition, both pairs spent most of the
time at the maximum possible Bray—Curtis dissimilarity
1, indicating divergence (see Supplementary Figure S3 for
joint distributions).

CLI led both pairs to have concepts with Bray—Curtis
dissimilarity of 0, which is more prominent for the 1-5
pair. With CLI, a variant that has once fixed in the center
and spread to peripheral regions is more likely to be kept
in peripheral subpopulations than the center because the
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center generates innovations to replace the existing one,
causing distant subpopulations to share identical variants
for extended periods. In contrast, UT resulted in pairs
having fewer concepts with the maximum dissimilarity of
1, particularly for the 1-5 pair. UT enhances transmission
efficiency, reducing chance of complete divergence by
enabling peripheral subpopulations to consistently share
variants diffused from the center.

When both conditions were present, their effects
combined: the 1-4 pair has more concepts with
dissimilarity 0, while the 1-5 pair has more concepts near
the maximum dissimilarity compared to the 1-4 pair. CLI
and UT thus create peripheral distribution through distinct
pathways, fixation and efficient diffusion, respectively, yet
both ultimately amplify the cultural center’s influence on
peripheral linguistic composition.

The tendency for peripheral areas to retain older words
was found to be driven solely by CLI and not by UT alone
(Figure 5). However, the distribution with CLI only and
that with both conditions are different; UT increases the
age of words linearly with distance from the center.

The expected value of age can be obtained analytically.
Let a,(f) be the expected age of the variants possessed by
subpopulation 7 at time 7. We have
ai(t+1)=ZjW,-j (o-uj+(a,-(t)+1)(1—u,-)). 14
Let us introduce the vectors a = (a,, a,, ... , a,)" , u = (u,,
Uy ..., p,)" and denote by 1 the M-dimensional vector
with all entries equal to one. Define the diagonal matrix as

1—u 0
diag(1—p) = < : : > (15)
0 1—py
The stationary state is obtained by solving
a =W diag(1 —w)(a+1) (16)

o (1 — W diag(1 — u))a =W diag(1 — p)1.

where / is the identity matrix. If the matrix (/ — W diag(1 —
H)) is invertible, we can obtain the solution for @ as

a=(1- W diag(1 — w)~'W diag(1 — 1. a7
Without CLI, #, is uniform across all subpopulations (i.e.,
u, = u for all 7). In the steady state, the expected age is
likewise uniform across all subpopulations. Denoting this

common value by a, the steady-state condition yields a = (a
+ 1)(1 — w), and thus

18

This result shows that in the steady state, the expected age
of variants is inversely proportional to the mutation rate u.



Figure 3

Necessary conditions for peripheral distribution of dialect

Linguistic distance patterns under different parameter conditions
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Note. (A-D) Linguistic distance from a subpopulation at one end of the lattice (subpopulation 1) to all other subpopulations under parameter
conditions where UT alone produces peripheral distribution (m = 271° N =2, ¢ =275, M = 7). (E-H) The same analysis under parameter
conditions where CLI alone produces peripheral distribution (m = 271°, N = 2% o =25, M = 7). The x-axis represents the subpopulation
index, and the y-axis represents the linguistic distance. The vertical dashed line indicates the position of the central subpopulation, while
the horizontal dashed line shows the linguistic distance between subpopulation 1 and the central subpopulation. Peripheral distribution
is indicated when subpopulations beyond the cultural center fall below the horizontal dashed line, meaning they are linguistically closer
to subpopulation 1 than the center despite being geographically farther. These panels demonstrate that peripheral distribution can emerge
through either UT or CLI mechanisms independently, and that the two mechanisms generate qualitatively different distance patterns.

Figure 4

Histograms of concept-wise Bray—Curtis dissimilarity
for (A) the population with neither Centralized Lexical
Innovation (CLI) nor Unidirectional Transmission (UT),
(B) that with UT/without CLI, (C) with CLI/without UT,
and (D) with both CLI and UT
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Note. For each condition, histograms show dissimilarity for two
subpopulation pairs: between a peripheral subpopulation 1 and
the cultural center 4 (blue), and between subpopulation 1 and a
peripheral subpopulation on the opposite side 5 (red). The plots
illustrate the frequency distribution of the dissimilarity for each pair,
revealing how often specific dissimilarities occurred under the four
experimental conditions. They highlight the distinct impacts of CLI
and UT on the linguistic relationship between the center and the
other subpopulations. Simulation parameters: M = 7, m = 0.01, N =
100, a=0.1.
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Figure 5

Expected age of variants (i.e., the number of generations
since the variant first emerged) across subpopulations
for (A) the population with neither Centralized Lexical
Innovation (CLI) nor Unidirectional Transmission (UT),
(B) that with UT/without CLI, (C) with CLI/without UT,
and (D) with both CLI and UT
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Note. The blue solid line represents the time-averaged simulation
results (with shaded regions indicating the standard error), while
the red dashed line indicates the analytical solution. Simulation
parameters: M =7, m = 0.01, N= 100, a = 0.1.



Discussion

This study investigated the dynamics of language
change using an extended Iterated Learning Model
that incorporates population structure. Specifically,
we examined the conditions under which the theory
of peripheral distribution of dialectal forms holds by
simulating the diffusion of linguistic features from
a cultural center to its periphery. Unlike previous
mathematical models (Lizana et al., 2011; Takahashi &
Ihara, 2020), which have inevitably assumed Centralized
Lexical Innovation (CLI), the present model can examine
cases without CLI. Our mathematical and numerical
analyses revealed that peripheral distribution can be
formed through multiple pathways—either through CLI
alone, Unidirectional Transmission (UT) alone, or both
conditions combined.

Our analyses show that a peripheral distribution
emerges not only when CLI and UT are both present, but
also when either condition is active alone (Figures 2 and
3). When both conditions are applied simultaneously,
the effects combine to produce the most pronounced
peripheral distribution patterns. One of our conclusions
that peripheral distribution can be achieved with CLI
and without UT aligns with Takahashi & Ihara (2020),
despite the two studies utilized different measures for (dis)
similarity between subpopulations. A novel finding that
the peripheral distribution can be formed with UT and
without CLI was also independent from distance measures,
indicating robustness of this thesis.

The opposite dependencies on mN between the two
single-condition scenarios reflect the fact that the two
conditions help to form peripheral distribution through
different mechanisms. With CLI, new variants originate
exclusively at the center. When mN is small, these variants
spread slowly and often fail to reach the periphery,
becoming fixed locally near the center while older variants
persist at the periphery. In contrast, with UT, variants
can originate anywhere but those from the center spread
preferentially. Larger mN values reduce drift, enabling
peripheral regions to more faithfully reproduce the center’s
linguistic state with a time lag, thus creating peripheral
distribution. These mechanisms also generate distinct
patterns in linguistic distance distributions: CLI increases
the frequency of zero-distance states between opposite
peripheral regions as they share identical archaic variants,
while UT reduces the frequency of maximum-distance
states by maintaining continuous transmission from the
center.

While both CLI and UT can generate peripheral
distributions in the absence of the other condition, the
present study also provided methods using empirical
data to identify which of the two candidate conditions
actually formed an observed peripheral distribution.
Specifically, different conditions yield (1) different
mean word age distributions across subpopulations and
(2) different frequency distributions of concept-wise
dissimilarity between a specific pair of subpopulations.
When innovation is centralized, peripheral regions
accumulate older variants, whereas uniform innovation
produces uniform mean age distributions; UT modulates
this by creating more linear age gradients. As for the
frequency distributions of concept-wise dissimilarity, CLI
characteristically increases the zero-distance frequency
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between opposite peripheries (i.e., the frequency of
concepts each of which is called by the same word in the
two subpopulations), while UT reduces the maximum-
distance frequency (i.e., the frequency of concepts each
of which is called differently in the two subpopulations).
Joint examination of these complementary patterns may
therefore allow researchers to determine whether a given
peripheral distribution has arisen from CLI, UT, or both.

The assumption that linguistic innovation always
occurs at a cultural center and diffuses outward is echoed
in the Principle of Adjacent Distribution (Shibata, 1969),
which posits that geographically adjacent communities
using distinct words likely innovated them in geographic
order. While this principle has traditionally been linked
to peripheral distribution, our results demonstrate that
peripheral distribution can be formed without CLI,
enabling more nuanced interpretation of dialect data than
previous approaches that implicitly assumed CLI.

Further studies using the present or an updated model
are needed. Our model examined only unidirectional flow
and symmetric bidirectional flow of linguistic data and
simplified the distinction between cultural centers and
surrounding regions. For example, cases with more than
one center have not been examined. Language change can
be influenced by additional factors such as heterogeneous
social networks, socioeconomic status, group ideologies,
and interactions with other linguistic communities (Hock,
1991). Future research should incorporate these factors and
validate model outcomes with historical linguistic data.
Additionally, the model’s capability to represent language
change in arbitrary network structures presents promising
avenues for exploring language evolution within complex
social relationships, such as those in online communities.
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