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(theory of peripheral distribution of dialectal forms; 
Yanagita, 1930). The theory is originally based on two 
assumptions: (1) new words are created exclusively at a 
cultural center (hereafter referred to as Centralized Lexical 
Innovation; CLI), and (2) information on linguistic form 
flows unidirectionally from the center side to the peripheral 
side probably because people in surrounding areas 
perceive a “prestige of center” for a word introduced from 
the center side and accept it (Unidirectional Transmission; 
UT). These assumptions explain how new words spread 
outward from the center, forming a peripheral distribution 
of each word, with older ones further from the cultural 
center.

So far, several studies have quantitatively evaluated the 
validity of the verbal argument by Yanagita (1930). Lizana 
et al. (2011) developed a mathematical model incorporating 
both of the aforementioned key conditions to obtain the 
peripheral distribution in their model. Takahashi & Ihara 
(2020) found that the concentric distribution can be formed 
only with the condition of CLI.

However, language change does not necessarily 
conform to CLI, and there are examples of linguistic 
innovat ions or iginat ing in per ipheral regions and 
subsequently diffusing back into cultural centers. For 
instance, the Japanese word uzattai, originally used only 
in the western suburbs of Tokyo, later diffused inward 
to central Tokyo and eventually nationwide, providing 
evidence of linguistic innovation flowing from peripheral 
regions into cultural centers (Inoue, 2010). Therefore, it 
is worth investigating whether peripheral distributions 
emerge even when the center does not play a special role in 
lexical innovation.

To address this gap, we developed an extended Iterated 
Learning Model that can independently test each of the 
two proposed conditions. By examining scenarios in which 
CLI and UT operate separately or together, we clarify the 
necessary conditions for peripheral distribution formation 
and provide insights into the fundamental mechanisms 
governing language change across geographic space.

Model
The present model is based on the previous, Bayesian 
Iterated Learning Model (ILM; Reali & Griffiths, 2010). 
The model considers a discrete-generation population, in 
which individuals (agents) have two life stages: learner and 
speaker stages. At the learner stage, they acquire linguistic 
knowledge by referring to data produced by individuals 
in the previous generation. At the speaker stage, they 
produce data, which can be observed by individuals in the 
next generation. Every individual born at time t serves as 
learner and speaker at time t and t + 1, respectively.

The learning process is formalized as Bayesian 
inference (Kirby, 2001; Kirby et al., 2007). Suppose that 
there are K variants in linguistic form (such as sounds, 
words, or grammatical constructions) v1, v2, … , vK, 
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Introduction
There is variation in languages, more specifically variation 
in linguistic forms such as morphemes, words, and 
grammars, at a wide range of levels (from global to local). 
Similarity between languages typically correlates with 
geographic closeness (De Gregorio et al., 2024). This 
would reflect the process by which a new variant generated 
in one subpopulation spreads between subpopulations, 
similar to the gene flow observed in biological evolution 
(Bromham, 2025). As a result, a linguistic cluster is 
formed by geographically close languages. 

However, some linguist ic dist r ibutions deviate 
from this general pattern of geographic clustering. An 
example of such a distribution pattern is the “peripheral 
distribution” proposed in the theory of Hōgen Shūkenron 
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and consider two types of K-dimensional vectors: x = 
[x1, x2, … , xK] and θ = [θ1, θ2, … , θK], where xk and θk 
denote sampled frequency and the estimated probability, 
respectively, of a variant vk. The sum of                   is 
fixed to N. The parameter N represents total times of valid 
observation and thus would be correlated with size or 
activity level of the population. The inferred distribution 
of θ after receiving data x, p (θ | x) is calculated as

where p (θ) is the prior distribution, indicating the innate 
biases common in the focal population. The likelihood p (x 
| θ) is a multinomial distribution, which is the probability 
of observed data x from the parameter θ. We assume 
that the prior distribution is a symmetric K-dimensional 
Dirichlet distribution, which means that individuals have 
no preference for a specific form. The distribution is 
determined only by parameter α and K:

The parameter α moderates the learner’s preference for 
diversity: the larger α / K value represents a tendency to 
retain the greater number of variants. Under the above 
assumptions, probability that a variant vk is produced is 
calculated as

See Reali & Griffiths (2010) for derivation of equation (3). 
We focus on the situation that mutation always produces 
a variant that has never been observed, in which case 
every mutation can be called lexical innovation. The 
number of variants K is potentially infinite, which yields 
an infinite dimensional Dirichlet distribution for the prior 
distribution. The probability that an already existing 
variant vk is reproduced and that of lexical innovation is 
given by

respectively. In this limit every mutation provokes lexical 
innovation, and the probability of mutation is correlated 
with the parameter α. Note that the Dirichlet prior does 
not allow the extreme case of α = 0. However, equation 
(2) approaches the Haldane prior                as α → 0. 
In this study, we define that the prior follows Dirichlet 
distribution when α > 0 and Haldane distribution when 
α = 0. In the case α = 0, the posterior distribution p (θ | 
x) follows                         and the production probability 
for variant vk simplifies to xk / N. In this case, the model 
is equivalent to the Wright-Fisher neutral model without 
mutation in genetics.

We further extended the model to describe dynamics 
in a structured population. In the present model, an 
individual belongs to one of M. subpopulations throughout 
his/her lifetime. A learner probabilistically chooses a 
subpopulation from which he/she samples a variant. 
We assume that the size of data pool produced by the 
speakers in each subpopulation is sufficiently large, 

allowing to regard the data received by each learner to be 
independently produced. The probability of receiving an 
already produced variant vk is given by

where                    is the number of times that vk is 
produced by speakers born at time t − 1 in subpopulation j, 
α( j), is the value of α (innovation rate) shared by individuals 
in subpopulation j, and Wij is the probability that a learner 
in subpopulation i adopts a variant produced by a speaker 
in subpopulation j. the probability of receiving a novel 
variant is given by 

To examine the effects of specific conditions on the 
formation of peripheral distribution, we considered four 
scenarios, each of which was with or without the following 
two conditions:

Centralized Lexical Innovation (CLI)
New words are innovated exclusively at the cultural center.

Unidirectional Transmission (UT)
Learners can accept linguistic information provided by 
an outgroup speaker only when the speaker comes from 
the subpopulation on the center side for some reason(s) 
(e.g., individuals in surrounding areas perceive a “prestige 
of center” for a word introduced from the center side), 
resulting in unidirectional information flow from center to 
periphery.

We analyzed a structured population consisting of M 
subpopulations (subpopulation 1, 2, … , M, where we 
assign an odd number to M) that are arranged on a one-
dimensional lattice. The following numerical examples 
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Figure 1
Schematic of the Iterated Learning Model (ILM)
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Note. In each generation, a learner observes linguistic data from a 
speaker of the previous generation. The learner updates its internal 
hypothesis based on this data via Bayesian inference. It then 
becomes the speaker for the subsequent generation, producing data 
from its updated hypothesis.
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i = j, the equation includes an additional term accounting 
for self-similarity:

The first term of the right-hand side in equation (12) 
represents the probability that the same element is sampled 
twice. When different elements are sampled, the variant 
type of each element is determined in the same manner 
as equation (11). By solving this system of equations 
algebraically, we obtain the steady-state values of Jij, which 
can then be used to compute linguistic distances between 
subpopulations.

We  a d d i t ion a l ly  e m ploye d  t he  Br ay – C u r t i s 
dissimilarity (Bray & Curtis, 1957) to verify robustness 
and investigate the frequency distribution of concept-wise 
distance. It is defined as:

All numerical simulations and mathematical analyses 
were implemented using Python 3.11.6. The core libraries 
utilized for computation included NumPy (version 2.3.4) 
and SciPy (version 1.16.3).

Results
To systematically examine the conditions under which 
peripheral distribution can be formed, we analyzed the 
parameter space of the innovation rate α, migration 
rate of linguistic form m, and data size N (Figure 2). 
With neither Centralized Lexical Innovation (CLI) nor 
Unidirectional Transmission (UT), no parameter sets 
yield peripheral distribution (Figure 2A–E). When both 
are present, peripheral distribution emerges across all 
explored parameters (Figure 2P–T). For the single-
condition cases (Figure 2F–O), when α << 1 and N >> 1, 
the boundaries depend solely on mN (appearing as lines 
with slope –1 in the log-log plot), with the two conditions 
exhibiting opposite dependencies: with CLI and without 
UT, peripheral distribution is observed when mN is below 
a threshold (Figure 2K–O). With UT and without CLI, 
peripheral distribution is found in the parameter region in 
which mN exceeds a threshold (Figure 2F–J). For both of 
the single-condition scenarios, smaller α values expand the 
parameter regions where peripheral distribution emerges. 
The robustness of the above findings was confirmed by 
Monte-Carlo simulations using Bray–Curtis dissimilarity 
for between-subpopulation similarity (Supplementary 
Figure S1).

Further numerical examination revealed that different 
CLI/UT conditions form different linguistic distance 
patterns (Figure 3). Although peripheral distribution can 
be formed with either one of CLI and UT, the underlying 
mechanisms generate qualitatively different distance 
patterns (compare Figure 3C and 3F). In contrast, when 
both conditions are present simultaneously, the resulting 
patterns show similar characteristics regardless of which 
mechanism dominates (Figure 3D and 3H). With neither 
condition, linguistic distance correlates with geographic 
distance as was well investigated by Nei (1972), and no 
peripheral distribution was observed (Figure 3A and 
3E). The effects of CLI and UT are not simply additive 

were obtained with seven subpopulations (i.e., M = 7). One 
subpopulation, c, is defined to serve as the cultural center. 
Here we assumed that it is the same as the geometric center 
(i.e., c = (M + 1) / 2 = 4). Inter-subpopulation interaction 
is restricted to occur between immediate neighbors. In 
a population without CLI, α(i) = α for all i is assumed. In 
a population with CLI, α(c) = α and α(i) = 0 for i ≠ c are 
assumed. In a population without UT, the interaction is 
symmetric: learners in subpopulation i can receive data 
from speakers in both of the neighboring subpopulations 
i − 1 and i + 1, with an adjustment at the boundaries. The 
interaction weight matrix is defined as follows:

where m represents relative magnitude of interaction 
(0 ≤ m ≤ 1; here we restrict the range to 0 < m ≤ 1 / 2 so 
that a learner is most affected by speakers in the same 
subpopulation). With UT, there is asymmetry in the 
interaction. The weight matrix in this case is defined as:

with which learners do not receive data f rom the 
peripheral-side subpopulation. Note that, in this case, 
learners in subpopulation c receive data exclusively from 
speakers in the same subpopulation (c) regardless of the 
value of m.

A per ipheral dist r ibution is said to be realized 
when at least one non-center subpopulation i has a non-
center partner j that exists beyond the center c and is 
linguistically closer to i than c is. To measure linguistic 
dissimilarity between subpopulations, we apply Nei’s 
standard genetic distance (Nei, 1972). In this study, we 
refer to this metric as the linguistic distance.  The Nei’s 
distance is defined as:

where Jij is the probability that two randomly chosen data 
elements—one from subpopulation i and the other from 
subpopulation j—are copies of the same variant:

Note that the sampling is with replacement when i = j. To 
obtain the steady-state values of Jij we derive the set of 
difference equations describing their temporal dynamics. 
For each pair of subpopulations i ≠ j, we have:

where μk = α(k) / (N + α(k)) is the probability that a novel 
variant is produced in subpopulation k. The term inside the 
summation describes the probability that (i) parents of the 
first and second samples are elements of subpopulation k 
and l, respectively, at time t (Wik Wjl), (ii) those parents are 
copies of an identical variant (Jkl (t), and (iii) no innovation 
has occurred in the course of learning ( (1 – μk) (1 – μl) ). For 
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To clarify the distinct mechanisms by which CLI 
and UT generate peripheral distribution, we obtained 
frequency distribution of concept-wise Bray–Curtis 
dissimilarities (Supplementary Text). Here shown are the 
frequency distributions for two representative pairs: one 
between subpopulation 1 and the cultural center 4, and the 
other between subpopulation 1 and subpopulation 5 (Figure 
4). With neither condition, both pairs spent most of the 
time at the maximum possible Bray–Curtis dissimilarity 
1, indicating divergence (see Supplementary Figure S3 for 
joint distributions).

CLI led both pairs to have concepts with Bray–Curtis 
dissimilarity of 0, which is more prominent for the 1–5 
pair. With CLI, a variant that has once fixed in the center 
and spread to peripheral regions is more likely to be kept 
in peripheral subpopulations than the center because the 

center generates innovations to replace the existing one, 
causing distant subpopulations to share identical variants 
for extended periods. In contrast, UT resulted in pairs 
having fewer concepts with the maximum dissimilarity of 
1, particularly for the 1–5 pair. UT enhances transmission 
efficiency, reducing chance of complete divergence by 
enabling peripheral subpopulations to consistently share 
variants diffused from the center.

When both conditions were present, their effects 
combined:  the 1– 4 pai r  has more concept s  with 
dissimilarity 0, while the 1–5 pair has more concepts near 
the maximum dissimilarity compared to the 1–4 pair. CLI 
and UT thus create peripheral distribution through distinct 
pathways, fixation and efficient diffusion, respectively, yet 
both ultimately amplify the cultural center’s influence on 
peripheral linguistic composition.

The tendency for peripheral areas to retain older words 
was found to be driven solely by CLI and not by UT alone 
(Figure 5). However, the distribution with CLI only and 
that with both conditions are different; UT increases the 
age of words linearly with distance from the center.

The expected value of age can be obtained analytically. 
Let ai (t) be the expected age of the variants possessed by 
subpopulation i at time t. We have

Let us introduce the vectors a = (a1, a2, … , aM)T , μ = (μ1, 
μ2, … , μM)T and denote by 1 the M-dimensional vector 
with all entries equal to one. Define the diagonal matrix as

The stationary state is obtained by solving 

where I is the identity matrix. If the matrix (I – W diag (1 – 
μ) ) is invertible, we can obtain the solution for a as

Without CLI, μi is uniform across all subpopulations (i.e., 
μi = μ for all i). In the steady state, the expected age is 
likewise uniform across all subpopulations. Denoting this 
common value by a, the steady-state condition yields a = (a 
+ 1) (1 – μ), and thus

This result shows that in the steady state, the expected age 
of variants is inversely proportional to the mutation rate μ.

4

Figure 2
Parameter space for peripheral distribution emergence

(Figure 3D and 3H). Detailed distance patterns from other 
subpopulations are provided in Supplementary Figure S2.
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𝒂𝒂 = 𝑊𝑊	diag(𝟏𝟏 − 𝝁𝝁)(𝒂𝒂 + 𝟏𝟏) (16) 

↔ 2𝐼𝐼 − 	𝑊𝑊	diag(𝟏𝟏 − 𝝁𝝁)4𝒂𝒂 = 𝑊𝑊	diag(𝟏𝟏 − 𝝁𝝁)𝟏𝟏. 
 

Note. Rows represent the four conditions: (A, E, I, M, Q) neither 
CLI nor UT; (B, F, J, N, R) with UT; (C, G, K, O, S) with CLI; and 
(D, H, L, P, T) with both. Columns correspond to the parameter α. 
Horizontal and vertical axes show data size N and migration rate 
m, respectively (log scale). Colored regions indicate the degree of 
peripheral distribution (defined as the proportion of subpopulation 
pairs showing peripheral pat tern: pairs where a non-central 
subpopulation b finds a subpopulation r on the opposite side of the 
center linguistically closer than the center itself). Red borders in (B, 
F, C, G) indicate parameter regions in which peripheral distribution 
is formed both with Centralized Lexical Innovation (CLI) without 
Unidirectional Transmission (UT) and with UT without CLI. When 
neither condition is present, no parameter combination yields 
peripheral distribution; when both conditions are present, peripheral 
distribution emerges across all explored parameters. For the single-
condition cases, when α << 1 and N >> 1, the boundaries depend 
solely on mN (appearing as lines with slope −1 in the log-log plot), 
with the two conditions exhibiting opposite dependencies: CLI 
produces peripheral distribution when mN is below a threshold, 
while UT produces it when mN exceeds a threshold. For both single-
condition scenarios, smaller α values expand the parameter regions 
where peripheral distribution emerges. Parameter ranges: log2 α ∈ 
[−15, 5] with step size 5, log2 m ∈ [−21, −1] with step size 0.25, log2 
N ∈ [0, 20] with step size 1, M = 7.

 

 

𝑎𝑎 =
1 − 𝜇𝜇
𝜇𝜇 . (18) 

 

𝒂𝒂 = #𝐼𝐼 − 	𝑊𝑊	diag(𝟏𝟏 − 𝝁𝝁)0
!"
𝑊𝑊	diag(𝟏𝟏 − 𝝁𝝁)𝟏𝟏. (17) 

 



Hachimaru & Seki LEBS Vol. 17 No. 1 (2026) 1–7

Necessary conditions for peripheral distribution of dialect

5

Figure 3
Linguistic distance patterns under different parameter conditions
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Figure 4
Histograms of concept-wise Bray–Curtis dissimilarity 
for (A) the population with neither Centralized Lexical 
Innovation (CLI) nor Unidirectional Transmission (UT), 
(B) that with UT/without CLI, (C) with CLI/without UT, 
and (D) with both CLI and UT

Figure 5
Expected age of variants (i.e., the number of generations 
since the variant first emerged) across subpopulations 
for (A) the population with neither Centralized Lexical 
Innovation (CLI) nor Unidirectional Transmission (UT), 
(B) that with UT/without CLI, (C) with CLI/without UT, 
and (D) with both CLI and UT

Note. (A–D) Linguistic distance from a subpopulation at one end of the lattice (subpopulation 1) to all other subpopulations under parameter 
conditions where UT alone produces peripheral distribution (m = 2−10, N = 210, α = 2−15, M = 7). (E–H) The same analysis under parameter 
conditions where CLI alone produces peripheral distribution (m = 2−10, N = 25, α = 2−15, M = 7). The x-axis represents the subpopulation 
index, and the y-axis represents the linguistic distance. The vertical dashed line indicates the position of the central subpopulation, while 
the horizontal dashed line shows the linguistic distance between subpopulation 1 and the central subpopulation. Peripheral distribution 
is indicated when subpopulations beyond the cultural center fall below the horizontal dashed line, meaning they are linguistically closer 
to subpopulation 1 than the center despite being geographically farther. These panels demonstrate that peripheral distribution can emerge 
through either UT or CLI mechanisms independently, and that the two mechanisms generate qualitatively different distance patterns. 

Note. For each condition, histograms show dissimilarity for two 
subpopulation pairs: between a peripheral subpopulation 1 and 
the cultural center 4 (blue), and between subpopulation 1 and a 
peripheral subpopulation on the opposite side 5 (red). The plots 
illustrate the frequency distribution of the dissimilarity for each pair, 
revealing how often specific dissimilarities occurred under the four 
experimental conditions. They highlight the distinct impacts of CLI 
and UT on the linguistic relationship between the center and the 
other subpopulations. Simulation parameters: M = 7, m = 0.01, N = 
100, α = 0.1.

Note. The blue solid line represents the time-averaged simulation 
results (with shaded regions indicating the standard error), while 
the red dashed line indicates the analytical solution. Simulation 
parameters: M = 7, m = 0.01, N = 100, α = 0.1.
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Discussion
This study invest igated the dynamics of language 
change using an extended Iterated Learning Model 
that incorporates population structure. Specif ically, 
we examined the conditions under which the theory 
of peripheral distribution of dialectal forms holds by 
simulating the diffusion of linguistic features from 
a cultural center to its per iphery. Unlike previous 
mathematical models (Lizana et al., 2011; Takahashi & 
Ihara, 2020), which have inevitably assumed Centralized 
Lexical Innovation (CLI), the present model can examine 
cases without CLI. Our mathematical and numerical 
analyses revealed that peripheral distribution can be 
formed through multiple pathways—either through CLI 
alone, Unidirectional Transmission (UT) alone, or both 
conditions combined.

Our analyses show that a peripheral distribution 
emerges not only when CLI and UT are both present, but 
also when either condition is active alone (Figures 2 and 
3). When both conditions are applied simultaneously, 
the effects combine to produce the most pronounced 
peripheral distribution patterns. One of our conclusions 
that peripheral distribution can be achieved with CLI 
and without UT aligns with Takahashi & Ihara (2020), 
despite the two studies utilized different measures for (dis)
similarity between subpopulations. A novel finding that 
the peripheral distribution can be formed with UT and 
without CLI was also independent from distance measures, 
indicating robustness of this thesis.

The opposite dependencies on mN between the two 
single-condition scenarios ref lect the fact that the two 
conditions help to form peripheral distribution through 
different mechanisms. With CLI, new variants originate 
exclusively at the center. When mN is small, these variants 
spread slowly and often fail to reach the periphery, 
becoming fixed locally near the center while older variants 
persist at the periphery. In contrast, with UT, variants 
can originate anywhere but those from the center spread 
preferentially. Larger mN values reduce drift, enabling 
peripheral regions to more faithfully reproduce the center’s 
linguistic state with a time lag, thus creating peripheral 
distribution. These mechanisms also generate distinct 
patterns in linguistic distance distributions: CLI increases 
the frequency of zero-distance states between opposite 
peripheral regions as they share identical archaic variants, 
while UT reduces the frequency of maximum-distance 
states by maintaining continuous transmission from the 
center.

While both CLI and UT can generate peripheral 
distributions in the absence of the other condition, the 
present study also provided methods using empirical 
data to identify which of the two candidate conditions 
actually formed an observed peripheral distribution. 
Specif ically, different conditions yield (1) different 
mean word age distributions across subpopulations and 
(2) different frequency distributions of concept-wise 
dissimilarity between a specific pair of subpopulations. 
When innovation is centralized, peripheral regions 
accumulate older variants, whereas uniform innovation 
produces uniform mean age distributions; UT modulates 
this by creating more linear age gradients. As for the 
frequency distributions of concept-wise dissimilarity, CLI 
characteristically increases the zero-distance frequency 

between opposite peripheries (i.e., the frequency of 
concepts each of which is called by the same word in the 
two subpopulations), while UT reduces the maximum-
distance frequency (i.e., the frequency of concepts each 
of which is called differently in the two subpopulations). 
Joint examination of these complementary patterns may 
therefore allow researchers to determine whether a given 
peripheral distribution has arisen from CLI, UT, or both.

The assumption that linguistic innovation always 
occurs at a cultural center and diffuses outward is echoed 
in the Principle of Adjacent Distribution (Shibata, 1969), 
which posits that geographically adjacent communities 
using distinct words likely innovated them in geographic 
order. While this principle has traditionally been linked 
to peripheral distribution, our results demonstrate that 
peripheral distribution can be formed without CLI, 
enabling more nuanced interpretation of dialect data than 
previous approaches that implicitly assumed CLI.

Further studies using the present or an updated model 
are needed. Our model examined only unidirectional flow 
and symmetric bidirectional f low of linguistic data and 
simplified the distinction between cultural centers and 
surrounding regions. For example, cases with more than 
one center have not been examined. Language change can 
be influenced by additional factors such as heterogeneous 
social networks, socioeconomic status, group ideologies, 
and interactions with other linguistic communities (Hock, 
1991). Future research should incorporate these factors and 
validate model outcomes with historical linguistic data. 
Additionally, the model’s capability to represent language 
change in arbitrary network structures presents promising 
avenues for exploring language evolution within complex 
social relationships, such as those in online communities.
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