Implementing petty favor in facilitating rich-poor resource exchange

Jiayu Chen ${ }^{*}$ and Tasuku Igarashi Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
*Author for correspondence (kagyokuchen@gmail.com)

Supplementary Materials

Prior Simulation 2
Descriptive statistics 4
Trend in partner choice 4
Distribution of cooperation rates 4
Bayesian modeling 7
Model 1. Two-step decision-making process in Sessions 1 and 2 7
Model 2. Three-step decision-making process in Session 2 17
Experimental materials 21
References 64

Prior Simulation

Considering the disparity in cooperation rates between rich and poor residential partners in a repeated PDG, a prior simulation was conducted to estimate participants' total rewards across 20 rounds. The simulation aimed to determine the participants' expected rewards as equally as possible across different patterns of partner selection. The proportion of participants choosing rich partners were set at $0 \%, 50 \%$, or 100%, and the cooperation rates ranged from 30% to 100%. Based on the calculations, we determined potential partners' (programmed bots) initial endowments between 600 and 800 points for rich bots and between 250 and 350 points for poor bots. The cooperation rates ranged from 25% to 45% for rich bots and 75% to 95% for poor bots.

However, because of programming errors in the experiment, the initial endowments of the rich bots ranged from 500 to 700 points. Therefore, we ran the simulation using this setting. This modification changed the distribution of total rewards in association with partner selection patterns (see Figure S1). Table S1 shows the simulated results of the estimation of total rewards in both the actual experimental setting and the prior simulation setting. This means that the preference for cooperative poor bots is confounded by the rational choice of higher rewards. Simulation codes and results were deposited in the Open Science Framework (https://osf.io/xh25d/?view_only=e70b961283ff45e5ae553d65f8561d22).

Table S1

Results of simulations

$\%$ of choice of rich bots as a partner	Initial endowments of rich bots							
	Setting used in the actual experiment (ranging from 500 to 700 points)				Setting used in the prior simulation (ranging from 600 to 800 points)			
	M	SD	Min	Max	M	SD	Min	Max
0\%	93.9	19.8	38.8	153	93.8	19.9	34.0	150
50\%	76.9	20.7	20.5	144	90.1	12.9	42.2	142
100\%	60.2	9.57	19.7	98	86.3	10.2	38.5	134

Note. We ran simulation 100,000 times and aggregated the results in each setting.

Figure S1

Total rewards across 20 rounds in simulated PDG (100,000 times). Participants' proportion of choice of rich partners was set as $0 \%, 50 \%$, or 100%.
(a) Setting used in the actual experiment (initial endowments of rich bots ranging from 500 to 700 points)

(b) Setting used in the prior simulation (initial endowments of rich bots ranging from 600 to 800 points)

Descriptive statistics

Trend in partner choice
We applied proportion tests to compare preferences for poor over rich residential partners. Participants (rich residential players) in the visible condition (61.88%) were more likely to choose the cooperative poor residential partners across the 20 rounds than those in the invisible condition $(45.96 \%), \chi^{2}(1)=109.39, p<.001$. Cooperative poor residential partners were more likely to be selected as partners in Session $2(60.97 \%)$ than in Session $1(47.45 \%), \chi^{2}(1)=78.97, p<.001$. Cooperativeness-based partner selection occurred under conditions of visible cooperativeness and with the provision of a petty favor system.

Distribution of cooperation rates

Figure S1 shows the distribution of cooperation rates across the 20 rounds of PDG. Table S2 shows the descriptive statistics of the average cooperation rates in the three-step decision-making process in Session 2.

Figure S2
Frequency distributions of cooperation rates in PDG at each round (1-20). The x-axis represents the cooperation rates (0-1). Session 1 included the rounds 1 to 10, and Session 2 included the rounds 11 to 20. $N=216$.

Table S2
Frequency of choice and cooperation rates in three-step decision making process ($N=216$).

Partner choice	Visibility of cooperativeness	Petty favor		Frequency (n)	Cooperation rate	
		Provision	Type		M	$S D$
Session 1						
Poor	Invisible	-	(Donation)	210	0.503	0.264
Poor	Invisible	-	(Signaling)	193	0.438	0.250
Poor	Visible	-	(Donation)	291	0.461	0.230
Poor	Visible	-	(Signaling)	331	0.456	0.223
Rich	Invisible	-	(Donation)	300	0.496	0.309
Rich	Invisible	-	(Signaling)	337	0.414	0.298
Rich	Visible	-	(Donation)	279	0.450	0.261
Rich	Visible	-	(Signaling)	219	0.379	0.251
Session 2						
Poor	Invisible	Provision	Donation	223	0.560	0.279
Poor	Invisible	Provision	Signaling	187	0.480	0.246
Poor	Visible	Provision	Donation	257	0.513	0.216
Poor	Visible	Provision	Signaling	278	0.469	0.240
Rich	Invisible	Provision	Donation	83	0.346	0.268
Rich	Invisible	Provision	Signaling	89	0.436	0.316
Rich	Visible	Provision	Donation	54	0.447	0.251
Rich	Visible	Provision	Signaling	56	0.337	0.228
Poor	Invisible	Hold	Donation	65	0.428	0.203
Poor	Invisible	Hold	Signaling	78	0.325	0.195
Poor	Visible	Hold	Donation	119	0.331	0.187
Poor	Visible	Hold	Signaling	110	0.395	0.182
Rich	Invisible	Hold	Donation	139	0.246	0.214
Rich	Invisible	Hold	Signaling	176	0.207	0.202
Rich	Visible	Hold	Donation	140	0.293	0.194
Rich	Visible	Hold	Signaling	106	0.287	0.155

Note. (Donation) and (Signaling) in Session 1 refer to the conditions in Session 2.

Bayesian modeling

The data were analyzed using R 4.2.0 (R Core Team, 2022). We performed a Bayesian multinomial logistic regression model (four chains with 10,000 iterations, 5000 warm-ups, thin $=1$, and 20,000 post-warmup draws) using the brms package version 2.17.0 (Bürkner, 2017). The package fits Bayesian models using Stan (Carpenter et al., 2017). We report the following results based on the Bayesian analysis reporting guidelines (Kruschke, 2021).

Model 1. Two-step decision-making process in Sessions 1 and 2

To examine the effect of implementing petty favors, we fitted Bayesian multinomial logistic regression models to the visible and invisible conditions in Sessions 1 and 2 separately (see Models 1a-1d). The dependent variable was the occurrence of the six two-step decision-making strategies (H-poor, M-poor, L-poor, H-rich, M-rich, and L-rich). We used weakly informative priors, relying on the default priors set by the brms package (intercepts for dummy variables: Student's t distribution with $d f=3, M=0$, and $S D=2.5$; and other parameters shown as b : uniform distributions). Prior distribution settings and Stan codes are available at https://osf.io/xh25d/?view_only=e70b961283ff45e5ae553d65f8561d22. The model formula is:

```
# Bayesian multinominal logistic regression mode1
Mod_visib7e <- (brm(y/tria7s(size) ~ 1,
    family = multinomial(),
    seed = 1234,
    chains = 4,
    iter = 10000,
    data = session1_average_visib7e [session1_average_invisib7e],
    [session2_average_visib7e], [session2_average_invisib7e])
```

Table S3 presents the parameter estimates for four models (Models 1a-1d). The calculated values based on the combinations of the parameter estimates in each condition are presented in Figure 1 in the main text (showing the preferences for each strategy under visible cooperativeness). All participants were allocated to the rich group.

We performed general Markov Chain Monte Carlo (MCMC) diagnostics based on model fitting. All R-hat values were below 1.05, indicating good convergence (Figures S3, S5, S7 and S9). All values of Neff/N were above 0.1, suggesting an effective sample size (Figures S4, S6, S8 and S10).

Table S3
Parameter estimates in two-step decision-making process in Sessions 1 and 2.

Parameter	Estimate	Posterior SD	95\% CI
Visible condition ($N=112$)			
Model 1-a			
Session 1 (M-poor vs H-poor)	0.95	0.1	[0.75, 1.14]
Session 1 (L-poor vs H-poor)	-0.18	0.13	[-0.43, 0.06]
Session 1 (H-rich vs H-poor)	-0.38	0.13	[-0.64, -0.12]
Session 1 (M-rich vs H-poor)	0.56	0.11	[0.35, 0.77]
Session 1 (L-rich vs H-poor)	0.09	0.12	[-0.14, 0.33]
Model 1-b			
Session 2 (M-poor vs H-poor)	0.08	0.08	[-0.08, 0.24]
Session 2 (L-poor vs H-poor)	-0.45	0.1	[-0.64, -0.26]
Session 2 (H-rich vs H-poor)	-1.88	0.16	[-2.21, -1.56]
Session 2 (M-rich vs H-poor)	-0.61	0.1	[-0.81, -0.42]
Session 2 (L-rich vs H-poor)	-0.55	0.1	[-0.75, -0.36]
Invisible condition ($N=104$)			
Modell-c			
Session 1 (M-poor vs H-poor)	0.68	0.28	[0.45, 0.92]
Session 1 (L-poor vs H-poor)	-0.09	0.39	[-0.37, 0.19]
Session 1 (H-rich vs H-poor)	0.58	0.21	[0.34, 0.82]
Session 1 (M-rich vs H-poor)	0.93	0.25	[0.71, 1.16]
Session 1 (L-rich vs H-poor)	0.60	0.43	[0.37, 0.84]
Model 1-d			
Session 2 (M-poor vs H-poor)	-0.23	0.10	[-0.42, -0.05]
Session 2 (L-poor vs H-poor)	-0.66	0.11	[-0.87, -0.44]
Session 2 (H-rich vs H-poor)	-1.26	0.14	[-1.53, -1.00]
Session 2 (M-rich vs H-poor)	-0.43	0.10	[-0.64, -0.23]
Session 2 (L-rich vs H-poor)	0.10	0.09	[-0.07, 0.27]

Note. $\mathrm{CI}=$ credible interval. The Bayesian multinomial regression model was estimated with a logit link that included four chains (5000 warm-up and 10,000 iterations in each chain). Based on partner selection (rich vs. poor) and cooperation rates (high [H] vs. medium [M] vs. low [L]), participants' behavioral patterns were categorized into six types. The H-poor strategy (choosing a poor residential player as a partner and with a high-level cooperation rate) serves as a baseline for comparison with the other strategies. Boldface indicates estimates for which the $95 \% \mathrm{CI}$ did not overlap zero.

Figure S3
Model 1-a: MCMC diagnostics for R-hat convergence statistics in the visible cooperativeness condition of Session $1(N=112)$.

Figure S4

Model 1-a: MCMC diagnostics for effective sample size statistic in the visible cooperativeness condition of Session $1(N=112)$.

Figure $\mathbf{S 5}$

Model 1-b: MCMC diagnostics for R-hat convergence statistics in the visible cooperativeness condition of Session $2(N=112)$.

Figure S6

Model 1-b: MCMC diagnostics for effective sample size statistic in the visible cooperativeness condition of Session $2(N=112)$.

$\rightarrow \mathrm{N}_{\text {eff }} / \mathrm{N} \square 0.1$
$\rightarrow \mathrm{N}_{\text {eff }} / \mathrm{N} \square 0.5$
$\rightarrow \mathrm{N}_{\text {eff }} / \mathrm{N}>0.5$

Figure S7

Model 1-c: MCMC diagnostics for R-hat convergence statistics in the invisible cooperativeness
condition of Session $1(N=104)$.

Figure S8

Model 1-c: MCMC diagnostics for effective sample size statistics in the invisible cooperativeness
condition of Session $1(N=104)$.

Figure S9

Model 1-d: MCMC diagnostics for R-hat convergence statistics in the invisible cooperativeness
condition of Session $2(N=104)$.

Figure S10

Model 1-d: MCMC diagnostics for effective sample size statistics in the invisible cooperativeness
condition of Session $2(N=104)$.

Model 2. Three-step decision-making process in Session 2

A Bayesian multinomial logistic regression model was fitted to examine the three-step decisionmaking process (partner choice, provision of petty favors, and cooperation rates to PDG) in Session 2. The settings for the priors in Model 2 were the same as those in Model 1. The model formula is:

```
# Bayesian multinomina7 logistic regression model
mod3 <- brm(y2/trials(size) ~ 1,
    family = multinomial(),
    seed = 1234,
    chains = 4,
    iter = 10000,
    data = dat_s2)
```

Table S 4 presents the parameter estimates. The calculated values based on the parameter estimates for each condition are presented in Figure 2 in the main text. We performed general Markov Chain Monte Carlo (MCMC) diagnostics based on these estimates. All the R-hat values were below 1.05, indicating good convergence (Figure S11). All values of $N e f f / N$ were above 0.1, suggesting an effective sample size (Figure S12).

Table S4
Parameter estimates in three-step decision making process in Session 2 ($N=216$).

Parameter	Estimate	Posterior SD	95\%CI
Provision-M-Poor vs Provision-H-poor	-0.46	0.08	[-0.61, -0.32]
Provision-L-Poor vs Provision-H-poor	-0.92	0.09	[-1.09, -0.75]
Provision-H-Rich vs Provision-H-poor	-1.74	0.12	[-1.97, -1.51]
Provision-M-Rich vs Provision-H-poor	-1.66	0.12	[-1.9, -1.44]
Provision-L-Rich vs Provision-H-poor	-1.42	0.1	[-1.63, -1.22]
Hold-H-Poor vs Provision-H-poor	-2.17	0.14	[-2.46, -1.9]
Hold-M-Poor vs Provision-H-poor	-0.83	0.08	[-1.00, -0.67]
Hold-L-Poor vs Provision-H-poor	-1.38	0.1	[-1.59, -1.18]
Hold-H-Rich vs Provision-H-poor	-2.77	0.19	[-3.16, -2.42]
Hold-M-Rich vs Provision-H-poor	-0.75	0.08	[-0.91, -0.59]
Hold-L-Rich vs Provision-H-poor	-0.40	0.07	[-0.54, -0.25]

Note. CI = credible interval. The Bayesian multinomial regression model was estimated with a logit link that included four chains (5000 warm-up and 10,000 iterations in each chain). Combining participants' cooperation rates (high [H] vs. medium [M] vs. low [L]) with partner selection (rich vs. poor) and provision of petty favors (provision vs. hold), all behavioral patterns were categorized into 12 types. The Provision-H-poor strategy (choosing a poor partner and providing a petty favor along with a high-level cooperation rate) in the invisible condition served as the baseline in the comparisons across the 12 strategies. Boldface indicates estimates for which the 95% CI did not overlap zero.

Figure S11

MCMC diagnostics for R-hat convergence statistics for Model 2.

Figure S12

MCMC diagnostics for effective sample size statistics for Model 2.

Experimental materials

餈源分配に関する研究

この度は，本研究にこかんただ素，馀にありがとうごさいます。加される竕に，以下の認明をお読み下さい。

【本研究の根要】

－本研究では，他の絡加者とべアを相み，ルールに従ってボイントのやり取りを行っていただきます。煐题 は以下の3つのハートー構成されます。所要時間は 30 分程度です。

1．アンケート：パーソナリティの頓向

本研究への部！

－この研究では，すべての产加者に落名のIDが付与されます。
 でも回答を中止することができます。
－脽かと相談したりせず，1人で取り組んでく尤さい。

（本研究の報䉽1

－軗胡は，最後までこ参加いただいた方にのみお支払いいたします。昆後まで参加いただくことで，300円 の銥詘を受討取ることがてもまする。
－すべての腲題が終了嵝，指示に従って，ランサーズのサイトでバスコードを入力してください。バスコー ドの群涊後，軟朝をお支払いいたします。
初期ボイント）の上位 2 名の枋加者に，それそれ
別タスクに招待）させていただきます。

【愺人倩鍍とテータの报い】

－本研究の実荷にあたっては，参加者の皆怢に不利益が生じないよう，個人情板の保渡およびブライバシー の嶪厘に最大除努めています。
－得られたデータの分析は，图人か特定されない形で行われます。特定の㮯人の回荅が級われることはあり ません。

```
[研寛成果の公表]
```



```
    ることがあります。
. 学衔研觉における情報の共有とデー夕の透明性に配慮し, 本研觉の成果を発表するにあたって, すべての
    マテリアルと固名化されたデータは, オンラインのデータベース (例 : the Open Science Framework;
    httos:/losf.io) にて公開予定です。
```

本研究への暏加にこ同意いたたける場合，「同意する」をクリックして進んてくたださい。
「同意しない」を買択した場合，このまま絡了します。朝酬を受け取ることはできません。
－ 1 陽宣3
兹爰しない

これから，あなた自身についていくつかお尋ねします。
「次へ」をクリックしてください。

次の文章が，あなた自身にどのくらいあてはまるかについて，暇も適切だと思う回管を䢱択してください。
$\left.\begin{array}{|l|c|c|c|c|c|}\hline & \begin{array}{c}\text { 1．全くあ } \\ \text { てはまら } \\ \text { ない }\end{array} & \begin{array}{c}\text { 2．どちらかという } \\ \text { とあてはまらない }\end{array} & \begin{array}{c}\text { 3．とちら } \\ \text { ともいえ } \\ \text { ない }\end{array} & \begin{array}{c}\text { 4．どちらかとい } \\ \text { うとあてはまる }\end{array} & \begin{array}{c}\text { 5．とてもよ } \\ \text { くあてはま }\end{array} \\ \text { る }\end{array}\right]$

すべての項目について選択後，「次へ」をクリックしてください。

このはしこは，日本に住む人々の「位國」を示すものと考えてください。

 も尊敬されるせ事についています。
 い仕事についているか，仕事がありません。
あなたが嘰かなら，はしこの一番上に近い位营にいることになります。あなたが鰂しいなら，はしこの一㕶下に近い位富にいることになります。

あなた自身は，このはしこのどこに位置すると思いますか。日本の他の人たちと比へて，自分が位四すると思 う部分を異択し，数学をクリックしてください

1（一畨上）

02
03

04

05
06

07
08
09
$10(-$＊下

「資源分配」実験の説明

－この実験では，他の参加者とペアを組んで，資源（ポイント）の分配を行っていただきます。参加者 のIDは，課題の開始時にランダムに決定されます。
－すべての参加者は，ランダムにA地区とB地区のどちらかの地区に割り振られます。それぞれの地区の イメージは，以下の写真をで临ください。

A地区

読み終わったら，「次へ」をクリックしてください。

「資源分配」実験の説明

所属地区の割り振り
－実験開始時の掕加者の所属地区はランダムに決定されます。所属地区によって，参加者の所有ポイン トは異なります。

A地区

B地区

- A地区の住民（inif のアイコン）：所有ポイントが 10,000 ポイント以上
- B地区の住民（翤㽞のアイコン）：所有ポイントが10，000ポイント未満
- ポイント数は課題を通じて増減し，所有ポイントによって所属地区が決定されます。つまり，すべて の参加者には所属地区の移動の可能性があります（例 ：実験開始時はB地区 \rightarrow 課題の途中で所有ポイ ントが 10,000 ポイント以上となり，A地区に移動）。

続み絡わったら，「次へ」をクリックレてください。

「資源分配」実験の説明
（1）ペアリング
－あなたには，他の参加者とペアを組み，複数回の意思決定課題に取り組んでいただきます。1回の意思決定＝1ラウンドで，ラウンドでとにぺアは変わります。
－この実験には，本日の参加者が全員同時に参加しています。実際に何名の方が参加されているかはお知らせできません。
－ランダムに買ばれた一部の参加者には，各ラウンドでぺアの相手を罚択する権限が与えられます。あ なたにべア緗択の権限があるかどうかは，課題を始める前にお知らせします。

読み終わったら，「次へ」をクリックしてください。

「資源分配」実験の説明

（2）意思決定課題

－課題は複数のラウンドで對成されています。ラウンドでとに，手持ちのポイントの一部が，元金（所有ポイント）として割り当てられます。
－ラウンドでとの元金（所有ボイント）は，所属する地区をベースに決定されます。つまり，A地区に所属するか，B地区に所属するかで元金は変わります。また，元金は全員均一ではなく，参加者ごと に異なります。元金は，そのまま手元に残しておけば，参加者のものになります。

境み涤わったら，「次へ」をクリックしてください。

「資源分配」実験の説明

（2）意思決定課題

－意思決定の内容は，それぞれの参加者が，ベアで行う課題（プロジェクト）のために，自分の元金か ら提供するポイントを決めるというものです。
－あなたとぺアの相手が提供したポイントは，合算された後に1．5倍され，ブロジェクトの利益となり ます。この利益は，あなたとぺアの相手に平等に分配されます。

読み終わったら，「次へ」をクリックしてください。

「資源分配」実験の説明

（2）意思決定課題

－例えば，あなたがブロジェクトに500ポイントを提供し，ペアの相手も500ポイントを提供した場合，あなたとぺアの相手の提供額を合計すると， $500+500=1000$ ポイントとなり，その 1.5 倍＝ 1500 ポイントがプロジェクトの利益となります。
－プロジェクトの利益である1500ポイントは，あなたとぺアの相手に750ポイントずつ分配されます。 つまり，あなたとぺアの相手は，それぞれ500ボイントをプロジェクトに提供した結果，750ポイン トを獲得することになります。

読み㮐わったら，「次へ」をクリックしてください。

「資源分配」実験の説明

その他の注意事項

－課題は所定のラウンド数に達したときに終了します。事前に全体のラウンド数を知ることはできませ h。
－課題の途中にはインターバル（休燱）があります。インターパル後の参加者の所属地区は，その時点 の手持ちのポイント数によって改めて割り当てられます（10，000ポイント以上：A地区，10，000ポイ ント未満：B地区）。つまり，インターバルの前後で参加者の移動が起こる可能性があります。
－追加ボーナスの対象者は，課題を通じてポイントを多く増やすことのできた上位の参加者となりま す。結果については，すべての実験が終了した後，対象の方にのみお知らせします。
－次のページでは，ルールの理解度テストに回答していただきます。

続み終わったら，「次へ」をクリックしてください。

理解度テスト

1．あなたとべアの相手の元金は，それぞれ100ボイントです。あなたは，100ポイント全額をプロジェクトに提供しました。また，ペアの相手も，100ボイント全額をプロジェクトに提供しました。課題の終了後，あなたが受け取るポイントはいくらでしょうか？

ポイント
2．あなたとべアの相手の元金は，それぞれ100ボイントです。あなたもペアの相手も，プロジェクトヘの提供額はロポイントでした。

課題の終了後，あなたの手元に残っているポイントはいくらでしょうか？
ポイント

「資源分配」課題

謤題のルール】

- この実験では，あなたは2人のペアに割り振られます。
- ペアの2人のそれぞれに，元金（ポイント）を差し上げます。
- この元金は，そのまま手元に残しておけば，あなたの所有ポイントになります。
- 手持ちの元金から，いくらのポイントをペアでのプロジェクトに提供するかを決めてください。

【ラウンドごとにポイントの隻得】

- ラウンドでとに得られるボイント数は，以下の通りに決定されます
- 提供額がOポイントである場合，手持ちの元金は，あなたの所有ポイントになります。
- 提供額がロボイントではない場合，ブロジェクトから戻ってくるボイント＝（ペアでの提供した ボイントの合計）$\times 1.5 \div 2$ 人
－（ラウンドごとに）あなたのポイント＝戻ってくるボイント＋提供しなかったポイント

回答を記入したら，「次へ」をクリックしてください。

理解度テストに正解しました。課題の説明は以上です。
「次へ」をクリックすると，秚題が始まります。

「資源分配」実験

あなたの参加者情報は以下のように決定しました。

－ID ：V46Wsj

- 所属地区：A地区
- 手持ちのポイント数：13550ポイント
- ラウンドごとの元金：600ポイント
- ペア選択の権限：あり

参加者情報を確認したら，「次へ」をクリックしてください。

次の文音が，あなた自身にどのくらいあてはまるかについて，最も適切だと思う回管を選択してくださ い。

A地区

B地区 品品

	1．まったくそう 思わない	2．そう思 わない	3．どちらとも いえない	4．そう 思う	5．たいんんを う思う
A地区の一買であってよかったと思 3．	0	0	0	0	0

すべての項目について䢙択後，「次へ」をクリックしてください。

あなたは，自分が平均的な A 地区の住民とどれだけ似ていると思いますか？

- 1．非常に似ている
- 2．かなり似ている
- 3．やや似ている
－4．どちらともいえない
- 5．あまり仪ていない
- 6．ほとんど似ていない
- 7．全く做ていない

あなたは，自分が平均的な B 地区 の住民とどれだけ似ていると思いますか？

1．非常に似ている

- 2．かなり做ている
- 3．やや似ている
－4．どちらともいえない
5．あまり做ていない
- 6．ほとんど似ていない
- 7．全く做ていない

選択後，「次へ」をクリックしてください。

あなたが，A地区（ in ）の参加者に抱く印象として，最も適切なものを選択してください。

	$\begin{gathered} \text { 1. 全くあてはま } \\ \text { らない } \end{gathered}$	2．とちらかというとあて はまらない	$\begin{aligned} & \text { 3. どちらともい } \\ & \text { えない } \end{aligned}$	4．どちらかというとあ てはまる	$\begin{gathered} \text { 5. とてもよくあて } \\ \text { はまる } \end{gathered}$
手際のい い	－	\bigcirc	0	0	0
誠実な	\bigcirc	0	0	\bigcirc	0
鲕ついい	\bigcirc	－	O	\bigcirc	0
嘍かい	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
親しみや すい	－	－	0	－	0
自信に満 ちた	\bigcirc	0	\bigcirc	0	0
感じの良 い	0	0	－	0	－
有能な	\bigcirc	\bigcirc	0	0	0
能力があ उ	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc
信頼でき る	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

回答後，「次へ」をクリックしてください。

B地区 酮

	$\begin{gathered} \text { 1. 全くあてはま } \\ \text { らない } \end{gathered}$	2．とちらかというとあて はまらない	3．とちらともい えない	4．とちらかというとあ てはまる	5．とてもよくあて はまる
手隝のい い	\bigcirc	0	0	0	0
	0	0	0	0	0
鴯のいい	0	0	0	0	0
虭い	\bigcirc	0	0	0	－
覞しみか すい	0	0	0	0	0
目信に㜔 ちた	0	0	0	0	0
至じの良 い	0	0	0	0	0
有能な	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
能力があ る	\bigcirc	\bigcirc	0	0	0
3	0	\bigcirc	0	0	0

回答後，「次へ」をクリックしてください。

これから，ペアでの意思決定課題を始めます。
「次へ」をクリックしてください。

Cooperativeness visibility：Invisible condition

```
                                    (1) べアの相手の選択
    あなたにはべアを決定する嵒限があります。
べアの相手を1人買択し, 罳号(No.1もしくはNo.2)をクリックしてください。
    あなた このラウンドの元金
            i0:va6wsi 600Nイハント
                            TOM*
```


iD：M35Vu

このラウンドの元金 300ボイント このラウント゚の元金 540パイント

Cooperativeness visibility：Visible condition

（3）結果		
	あなた	目菫
気金（a）	600\％イント	300ボーントト
	300\％${ }^{\text {a }}$	स29ाアY｜
フロリェクトの成果	397 ホイント	397ホイント
＊｜（b）	97ホイント	s68がメント
（1）	69アホイント	46日rイイン

Repeated 10 rounds for Session 1

最初の10ラウンドが終了しました。 あなたの現在のポイント数は，14577です。

あなたは，A池区に所属しています。
「みへ」とクリックしてください。

休索（インターパル）
以降の課題では，新たなルールを追加します。各ラウンドでベアの相手を䍚択した後，以下の2つのいず れかのオブションを爵級し，資源分配を行ってください。
－オプション1：あなたの元金から50ボイントをペアの相手に濾し，その後，資源分配証題を行います。
－オブション2：あなたの元余を相手に渾すことはせず，資源分配課筫を行います。
「2火へ」をクリックすると，棵影の続きが始まります。

Cooperativeness visibility：Invisible condition

```
                                    (1)べアの相手の選択
    あなたにはペアを決定する権限があります。
ベアの相手を1人曐択し, 番号(No.1もしくはNo.2) をクリックしてください。
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline No． 2 \\
\hline 10． 58 \\
\hline
\end{tabular}
```

このラウンドの元金 600ボイント
 このラウンドの元金 260ボイント このラウンドの元金 560ぶイント

Cooperativeness visibility：Visible condition

Donation condition

（2）オプションの選択
あなたは，元金（600ポイント）のうち，50ポイントをペアの相手に渡しますか？ ペアの相手は，あなたがどちらのオプションを選択したかを知ることはありません。

Signaling condition

（2）オプションの選択
あなたは，元金（600ポイント）のうち，50ポイントをペアの相手に渡しますか？ もし 50 ポイントを渡す場合，ペアの相手には，このラウンドではボーナスポイント

が与えられると伝えられます。

（3）提供舒の決定

50ポイントをぺアの相手に渡しました。 0－550ボイントの間で提供積を入力してください。

ポイント

（4）結果		
	＊	相手
嗐（a）	600ボイント，50ボイント	260ボイント＋50木1イント
	300界イY5	286）fリト
フロシェクトの艮里	440ホイント	440ホホイント
	140れイント	154ホイイン
	690ホトイント	464 ポイント

「次へ」をクリックしてください。

資源分配課題が終了しました。
 開始時のポイント：13550ポイント
 終了時のポイント：15744ポイント
 猚得ポイント（ポイントの増分）：2194ポイント
 「次へ」をクリックしてください。

次の文音が，あなた自身にどのくらいあてはまるかについて，最も適切だと思う回管を選択してくださ い。

A地区

B地区 品品

	1．まったくそう 思わない	2．そう思 わない	3．どちらとも いえない	4．そう 思う	5．たいんんを う思う
A地区の一買であってよかったと思 3．	0	0	0	0	0

すべての項目について䢙択後，「次へ」をクリックしてください。

次の文章が，あなた自身にどのくらいあてはまるかについて，最も逼切だと思う回答老買択してください。

あなたは，自分が平均的な A 地区 の住民とどれだけ㫄ていると思いますか？
－1．韭第に維ている
－2かなのがている
－3．やや絫ている
－4．どちらともいえない
－5．あまのたていない
06．はとんどど馀ていない
07．⿱⿱一厶土刂くくなていない

あなたは，自分が平均的なB地区 の住民とどれたけ做ていると思いますか？
－1．非业に䋁ている
－2かなりがたいる
03やや路をいる
4．とちらともいえない
－5．あまのたていない

- 6．ほとんと锥ていない
- 7．全く銮ていない

进択後，「次へ」をクリックしてください。

	$\begin{gathered} \text { 1. 全くあてはま } \\ \text { らない } \end{gathered}$	2．とちらかといろとあて はまらない	$\begin{gathered} \text { 3. とちらともい } \\ \text { えない } \end{gathered}$	4．とちらかというとあ てはまる	5．とてもよくあて はまる
手筦のい い	0	\bigcirc	0	0	0
碦建な	0	0	0	0	0
䜖のいい	－	－	\％	\bigcirc	\bigcirc
風かい	0	\bigcirc	0	0	0
誢しみや すい	0	\bigcirc	0	0	0
日信に满 らた	0	\bigcirc	0	0	0
挃じの良 い	\bigcirc	0	0	0	0
有能な	0	\bigcirc	0	0	0
能力があ 존	0	\bigcirc	0	0	0
住講でき 3	0	\bigcirc	0	0	0

回管緂，「次へ」をクリックしてください。

	1．全くあてはま らない	2．どちらかというとあて はまらない	3．どちらともい えない	4．とちらかといろとあ てはまる	5．とてもよくあて はまる
手陽のい い	0	－	0	0	0
啟建な	0	\bigcirc	0	0	0
鿬のいい	0	\bigcirc	0	0	\bigcirc
理がい	－	\bigcirc	0	0	\bigcirc
誢しみや すい	0	\bigcirc	0	0	0
日信に気 ちた	0	0	0	0	0
焉しの良 い	0	\bigcirc	0	0	0
有陪な	0	\bigcirc	0	0	0
能力があ ล	0	\bigcirc	0	0	0
権縜でき 3	0	\bigcirc	0	0	0

回管後，「次へ」をクリックしてください。

休魏後のラウンドでは，ペアの相手に50ポイントを渡すオプションが追加されました。ペアの相手は，あなたがどのオプションを選択したかを知ることができたでしょうか。
1．はい
2．いいえ
3．わからない

あなたの年鄰を淠択してください：

通枟倳，「次へ」をクリックしてください。
－男推
如
そのれ

○中校

D 黄家学校

（组䐓大7
大学
大学院

入力後，「次へ」をクリックしてください。

入力後，次へ」をクリックしてください。

艮題は全て緤了しました。

ご㙝かいただき，誠にありがとうございました。

本ベージの内率を潡謢した上で，「次へ」をクリックして，次のベージに進んでください

以下，本研究の目的を説明させていただきます。
私たちが住んでいる世界は，全ての面で平等というわけではありません。国籍や珄別，学歴な ど，さまざまな側面にまつわるステレオタイブや偏見，差剧は未だに存在しています。私たち の研究は，こうした間題筫樴を路まえ，手持ちの資源量（リッチ・プア）の格差に着目し，資源分配棵題を行う覴に，富裕層の人々が同じ富裕屇の人々を好んで選択するのかについて検討 を行いました。
あなたには，コンビュータのブログラムで制御されたA地区•B地区のいずれかの候補者から1人を選んでべアを組んでいただき，敦源分配において自分のポイントを相手に提供するかどう かを選択していただきました。事前に情報が与えられることで回答内容に影響が出ることを避 けるため，架空の参加者を侯䋠者として提示した点について，お伝えすることを控えさせてい ただきました。大変申し粑ございませんでした。

研究内容の詳細や，研究結果の報告など，こ意見・ご感想がございましたら，研究実施者 までメールにてご連絡ください。

［研究実施者の連絡先】

上記の内容をこ確認いただきましたら，「次へ」をクリックして，同意の再確認と報酬の受け取り手続きに進んでください。

これから，あなたの回答データの使用について，再度の同意礶詒を行います。 ネこの時点で同意を撤回しても，報酬を受け取ることができます。

本同青の目的をこ理鮮いただいた上て，データを教用してもよいという場合には，「同息する」 をクリックし てください。回荅をデータ分析に使用されたくない場合，「回苕を分析に用いない」をクリックレてくださ
い。

－聞する

－四等をテータ分折に用いない

すべての課題が終了しました。お疲れ様でした。
ご参加いただき，䧕にありがとうございました！ ブラウザの「閉じる」 ボタンを押してください。

References

Bürkner, P.-C. (2017). brms: An R Package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1-28. https://doi.org/10.18637/jss.v080.i01
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., \& Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1-32. https://doi.org/10.18637/jss.v076.i01
Kruschke, J. K. (2021). Bayesian Analysis Reporting Guidelines. Nature Human Behaviour, 5(10), 1282-1291. https://doi.org/10.1038/s41562-021-01177-7
R Core Team. (2022). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

