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Cumulative cultural evolution is what made humanity 
to thrive in various ecological and demographic 
environments. Solutions to the tasks that humans 
needed to solve could be mapped onto a task space 
which could take the form of either closed or open-
ended f itness landscape, with the former being 
modeled more extensively than the latter in studies 
of cultural evolution. In this article, we modified a 
simulation by Arthur and Polak (2006) that modeled 
open-ended fitness landscape by using a computer 
simulation that builds logical circuits with circuits that 
were built in earlier trials. We used this simulation to 
clarify the nature of open-ended fitness landscape 
and to investigate whether the speed of accumulation 
of culture is increased by an increase in group size. 
The results indicated that group size increased the 
speed of accumulation but is limited than expected. 
Also, when two types of accumulation, invention and 
improvement, were distinguished the nature of the 
two differed. In improvement, the trajectory followed 
a convex function with productivity of one agent 
decreasing as group size increased.  In invention, 
the trajectory showed a continuous pattern of rapid 
increase followed by a plateau.
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Introduction
The accumulation of culture over many generations, or 
cumulative cultural evolution (Arthur, 2009; Basalla, 
1988; Henrich, 2017; Mesoudi, 2011), has led the Homo 
genus to thrive in many, if not all, regions of our planet. 
Theoretical and empirical investigations into cumulative 
cultural evolution have paid special interest in the 
cognitive abilities and the impact of demography (Dean et 
al., 2013; Henrich, 2004). Although not as frequent, there 

exist another interest in the fitness landscape (also called 
adaptive landscape or design space) of cumulative cultural 
evolution (Acerbi et al., 2015; Miton & Charbonneau, 
2018). Fitness landscape refers to a set of all potential 
solutions to a task that agents may produce (Miton & 
Charbonneau, 2018).

Fitness landscapes could be modeled in two different 
ways. One that is used above and in most studies of 
cumulative cultural evolution is closed fitness landscape. 
Closed fitness landscape refers to a fitness landscape that 
cannot be altered by the decisions or the actions of an 
agent solving a task. This implies that all the choices in 
the fitness landscape can be chosen at any time period. 
For example, Mesoudi and O’Brien (2008) created a 
fitness landscape that consisted of 4 dimensions (width, 
height, thickness, and shape), which was used to create 
a virtual arrowhead. Each dimension was designed with 
a particular f itness function so that each coordinate 
in the dimension corresponded to a particular fitness. 
Participants in their experiment changed the coordinates 
in each dimension to achieve the largest fitness or calories. 
Closed fitness landscapes are useful because they are easy 
to formulize. On the other hand, it also gives participants 
the opportunity to find the maximum fitness in the early 
stages of transmission by mere chance.

In contrast, open-ended fitness landscape refers to a 
situation where an accumulation opens up a new landscape 
for selection to operate. As a result, these cultural 
evolutionary systems tend to increase in complexity not 
only because the fitness landscape tend to increase in 
space, but also these newly opened fitness landscapes can 
replace the highest peak in the fitness distribution (Clark 
1985; Ar thur 2009; Solé et al., 2002). Usually, the 
complexity is increased by recombining already created 
artifacts together to create new ones, which captures the 
essence of technological evolution (See SI:1 for examples). 
Derex and Boyd (2016) for instance found experimentally 
that in an open-ended fitness landscape, increase in 
group size alone will not increase the chance of finding 
the optimal solution which built upon the idea formally 
believed in cultural evolution studies. 

Another experiment aimed at modelling the nature 
of technological evolution by simulating the evolution 
of logical circuits. Arthur and Polak (2006) simulated a 
situation where an agent randomly wired together logical 
circuits to create new circuits. They differentiated newly 
made circuits by improvement and invention where 
the former implying circuits that improved preexisting 
circuits that were made previously and the latter implying 
circuits that served a new purpose. Logical circuits have 
a characteristic where key circuits such as AND circuit 
or OR circuit be used to create diverse number of other 
functional circuits (see SI:2 for more details). Whenever 
such inventions were made, these opened newly fitness 
landscapes that either made previously created circuits 
more efficient (termed gales of destruction; Schumpeter, 
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the created circuit was called improvement. When 
improvement was made, the older circuit that fulfilled 
the same functionality was deleted from the pool. On the 
other hand, if the circuit was neither an invention or an 
improvement, the circuit was called junk and was never 
included in the pool.

The conditions were separated by how many agents 
were involved in creating the circuits in the simultaneous 
trial. The group sizes were 1, 2, 4, and 8. In the conditions 
that had multiple agents, agents created circuits by 
themselves. After creating the circuits, the circuits were 
pooled together. The pooled circuits could be used by all 
agents in the next trial. This meant that the agents had no 
synergetic influence on one another.

In each condition, 1 replication consisted of 100,000 
trials and 20 replications were run. Whenever all the goals 
were met, the replication was terminated. The program 
was created in GNU CLISP (ver. 2.49) which is an 
implementation of Common Lisp. The simulation was run 
on 16GB memory Windows 10.
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1911) or made newly inventions be invented rapidly (termed 
technological Cambrian explosion).

This study was able to model open-ended fitness 
landscape by actually modelling technology that is often 
invented in industries. Considering technological evolution 
often modeled in cultural evolutionary studies lack 
external validity (Miton & Charrboneau, 2018), models 
made by Arthur and Polak (2006) could be used to test the 
theories that were already created in cultural evolution 
studies in closed fitness landscape. 

In the present study, we attempt to further clarify the 
feature of open-ended fitness landscape by varying group 
size in the model created by Arthur and Polak (2006). 
We added conditions where agents in the same society 
were able to use circuits built by other agents. Just as in 
Derex and Boyd (2016), we were interested in how various 
group sizes perform in an open-ended fitness landscape 
created by Arthur and Polak (2006). Since the present 
study have no transmission error, we are not particularly 
concerned about whether increase in group size stop the 
deterioration of cumulative culture. Additionally, by using 
Arthur and Polak (2006) simulation, we may be able to 
see whether group size have different effect on invention 
and improvement. In the following simulation, agents in 
the same trial did not interact with one another that could 
create a synergetic interaction for simplicity.

Method
The simulation was a modified version of Arthur and Polak 
(2006). In the original simulation, several NAND circuits 
were randomly wired together in a non-cyclic way to make 
a new circuit that could be used to create another circuit in 
further trials. This sequence was repeated several thousand 
times, which created circuits that were often used in 
reality (e.g. OR circuit, AND circuit, and n-bit ADDER). 
The simulation used in this experiment added agents that 
created circuits simultaneously to vary group size.

In the first trial of all conditions, agent(s) started only 
with a NAND circuit. Agents wired several NAND circuits 
to create a new circuit that served a new functionality. 
The minimum and the maximum number of total NAND 
circuits that could be wired together were 2 and 12 
respectively throughout the trials. The new circuit that was 
created in the first trial was automatically stored in the 
pool, which was a group of circuits that could be used as a 
component for making a new circuit in further trials. Each 
circuit was insured to be a directed acyclic graph. The 
choice of using which preexisting circuit was determined 
by a choice function (Arthur and Polak, 2006; SI:2) that 
specifies probabilities of selection.

Circuits were evaluated by its functionality, i.e. truth 
table. Preceding the simulations, goals were defined which 
consisted of specific input-output circuitry (Table 1; SI:3). 
When the created circuit either met the goal for the first 
time or was close to meeting the goal determined by the 
prespecified truth table, the created circuit was called 
invention.

Determined by the truth table, when the created 
circuit met the same functionality as with the circuit that 
was included in the pool but with less cost (here cost 
refers to the total number of NAND circuits used since 
all the created circuits are created from NAND circuits), 

Table 1. Goals that were defined preceding the 
simulations.

There were 16 goals in total. N-bit adder had a range 
of 1 to 8.

Results
The number of trials by conditions and replications are 
shown in Table 2. Replications were terminated when all 
the given goals had been achieved.  Replication 16 of group 
size 4 was aborted by memory error, thus we excluded it 
from the following results. Since the main results are on 
inventions and improvement, results for goals and junks 
are in SI:4. 

Basic properties of evolution in group size-1
Since the results of size-1 condition were identical to 
Arthur and Polak (2006), we regarded the results of size-1 
condition as a baseline. The primary results of group size-
1 are shown in Figure 1.

The number of inventions in each trial is shown in 
figure 1a. Generally, we saw a repeated pattern where there 
was a rapid increase in invention followed by a period 
where there was minimal increase, which resembled that of 
a continuous convex function. This continuous sigmoidal 
like pattern was present in all replication.

Figure 1b shows the number of improvements that 
made the circuit more efficient. In total, we saw a general 
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indicated that as group size increased, the gentle slope seen 
in replications under group size-1 was quickly followed by 
a rapid increase. And as quicker the goals were met, the 
plateau in bigger group sizes became longer along the end 
of the simulation. Since this simulation had no synergetic 
interaction between agents, effects of group size n should 
be homologous to speeding up the trials by n. Figure 
2b shows the difference between speeding up the trials 
in group size 1 by n times compared to the actual data. 
Similar to goals, the light line was above the solid line 
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increase in improvements as trials progress. Though in 
some replications we saw a repeated convex like shape 
in the increase in improvement, compared to invention 
however, the pattern was not robust.

Comparison between group sizes
Figure 2 shows the comparison within invention. The 
average number of inventions indicated that as group 
size increased, cumulative increase in invention started 
to resemble that of a repetitive sigmoidal shape. This 

Table 2. The number of trials by conditions and replications.

Replications were terminated automatically when all prespecified goals 
were met. Dashed data represents the data that was terminated due to error.

Replication

1 100,000 100,000 95,950 42,000

2 100,000 100,000 58,000 75,216

3 100,000 100,000 100,000 53,636

4 100,000 100,000 88,867 51,952

5 100,000 100,000 100,000 38,965

6 100,000 100,000 100,000 57,881

7 100,000 97,981 100,000 37,000

8 100,000 100,000 90,000 62,796

9 100,000 100,000 100,000 66,986

10 100,000 100,000 68,988 38,100

11 100,000 90,974 93,754 44,977

12 100,000 100,000 79,970 66,716

13 100,000 100,000 100,000 44,000

14 100,000 100,000 100,000 56,974

15 100,000 100,000 75,949 59,000

16 100,000 100,000 25,965 49,989

17 100,000 100,000 79,399 38,717

18 100,000 100,000 83,987 77,000

19 100,000 100,000 64,000 44,617

20 100,000 100,000 100,000 46,772

Conditions

size-1 size-2 size-4 size-8

Figure 1. The cumulative score for each variable in group size-1.

Cumulative score for each replication in group size-1. (a) represents the results from invention and (b) 
represents the results from improvement.
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Figure 2. The cumulative score for invention in each condition.

(a) Light lines indicate raw data from each replication. Solid lines indicate the average. The average 
value was displayed up to a point where no termination was present in all trials. (b) Solid lines 
represent the average cumulative score. Light lines represent the prediction calculated with group-size 1. 
(c) Solid lines represent the average cumulative score. Light lines represent the fitted line using power-
law function.

	

Figure 3. The cumulative score for improvement in each condition.

(a) Light lines indicate raw data from each replication. Solid lines indicate the average. The average 
value was displayed up to a point where no termination was present in all trials. (b) Solid line 
represents the average cumulative score. Light lines represent the prediction calculated with group-
size 1. (c) Solid lines represent the average cumulative score. Light lines represent the fitted line 
using power-law function.
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Figure 4. Comparison of normalized RMSE from the 
fitted model in all condition.

Bar graph representing the normalized RMSE (Root Mean 
Squared Error) from the curve fit model between invention 
and improvement.

indicating that the productivity of group size was lower 
than expected. We also fitted the data using OLS with the 
power function applied through the curve_fit function 
from SciPy (ver. 1.2.1) module in Python (ver. 3.6.8). Since 
the data fitted poorly in invention, it suggested that the 
increase in invention did not follow a power function and 
those follow a more sophisticated one.

Figure 3a shows the actual data and their average 
results from improvement in each condition. Consistent 
with inventions, speed of improvements also increased 
with increase in group size similar to a gentle upward 
convex function. When the speed of group size-1 was 
increased to be compared with other group sizes, the two 
lines seemed to overlap with one another. This indicated 
that the speed of improvements was proportional to that 
of group size. Just as in invention, we fitted the data with 
OLS. The results indicated that improvement was roughly 
proportional to the square root times the group size, but 
there was a pattern in which the estimated value of the 
index increased as the group size increased. This suggested 
that as the group size increased, the rate of increase of the 
slope became steeper. The results from OLS also suggested 
that the properties of invention and improvement differed. 
We compared the normalized RMSE (Root Mean Squared 
Error) from the OLS between invention and improvement 
in Figure 4. This suggested that improvement fit well with 
the OLS more than invention indicating that the nature of 
the two differed.

by increase in group size was lower than the baseline 
(which was the n-times the speed of group size-1) and 
the way that inventions accumulated were similar to 
a repetitive sigmoidal function. On the other hand, 
improvement matched that of the baseline and the rate 
in which improvement increased was square root times 
the group size, which means that the effect of group size 
becomes smaller as group size becomes bigger.

Looking further into the comparison between the 
baseline and the actual result of varying group size in 
invention, the actual data seems to catch up on the baseline 
after a few trials. Since invention in logical circuits needs 
simpler circuits to be invented beforehand, there is a 
bottleneck before any further inventions can be made. This 
may indicate that in an open-ended fitness landscape where 
new fitness landscape opens hierarchically, group size will 
only be an advantage only after a few fitness landscapes 
have been opened.

One reason for the decrease in the effect of group size 
in improvement could be due to a chance that one of the 
agents in the group created an improvement so efficient 
that other agents could not improve any further. The 
chance that any agent creates an efficient circuit increase 
as group size increase, which is similar to the point seen in 
Henrich (2004).

The interest ing f inding is that the funct ion of 
invention and improvement differed. Kaufmann (1993) 
has argued that when agents start to hill climb in closed 
fitness landscape, the probability that the agent can climb 
further decreases as she reaches the top. This would be 
an explanation for marginally decreasing function in 
improvement. In invention, we observed an s-shaped 
curve, which could be seen in many field research (Foster 
1986; Christensen 1997; Christensen 2009). As mentioned 
by Arthur and Polak (2006), the rapid take-off of invention 
is subject to goals (e.g. AND circuit, OR circuit, etc.) 
being met. This means that when a goal is met, inventions 
using that goal circuit rapidly increase. However, at some 
point, the limits of using that goal circuit are reached 
and the growth of inventions stops. Such a result was 
never reported in cultural evolutionary models and can 
be considered as a key finding in this study. Nonetheless, 
since this is a post hoc analysis, whether or not the results 
that inventions take the form of a repetitive s-curve is open 
for debate. 

Besides the d if ference between invent ion and 
improvement, one of the take-home messages is that even 
if group size increases, the productivity of one agent being 
added decreases as group size becomes bigger. This also 
suggests that an increase in group size is sufficient to 
maintain technology but not enough to accelerate the speed 
of innovations. However, we did not include synergetic 
interactions for simplicity in this study which means there 
is still room to argue that with interaction, group size 
does increase the speed of innovations. On the other hand, 
behavioral sciences have shown that group processes do 
not always have a positive effect (e.g. groupthink, social 
loafing). We need further examination to see whether 
interaction does increase the speed of innovations in an 
open-ended fitness landscape.

There are still many candidates that may affect 
the speed of innovations. One example is network 
structure (Frenken 2006; Powell, Koput, & Smith-

Discussion
Open-ended fitness landscape is one of the features of 
technological evolution. However, the nature of this aspect 
is understudied especially in fields like cultural evolution 
where many have pointed out the mechanisms that 
facilitate the growth in technology under a closed fitness 
landscape. The main goal of this study was to examine 
the architecture of open-ended fitness landscape through 
the evolution of logical circuits with varying group sizes, 
which is one of the mechanisms identified as the cause of 
cumulative cultural evolution  (Henrich, 2004; Henrich, 
2017).

Results showed that the increase in speed of invention 
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Doerr, 1996).  Derex and Boyd (2016) have reported 
experimentally that partial connectivity increases the 
innovations of a group more than a full connected group 
in an open-ended fitness landscape. Such mechanisms are 
needed to be explored in future research. 
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