Stylized and Photographic Eye Images Do Not Increase Charitable Donations in a Field Experiment

Paul Lennon, Rachel Grant, V. Tamara Montrose* Department of Animal and Agriculture, University Centre Hartpury, Hartpury, Gloucestershire, GL19 3BE, United Kingdom

*Author for correspondence (Tamara.Montrose@Hartpury.ac.uk)

The effects of watching eyes upon prosocial behavior have been explored in various contexts, for example, in relation to charitable donations, honor-system payments and littering. Whilst studies have explored the effects of both photographic and stylized eyes upon prosocial behavior, no study, to our knowledge, has compared stylized eyes to photographic eyes. Here we explored the effects of stylized and photographic eye images upon prosocial behavior assessed via charitable donations in a ‘free cakes’ field experiment. Charitable giving was assessed under six eye image conditions, three stylized eye images (evil eye, eye of Horus, all-seeing eye), one photographic eye image (human eye image) and two control images (geometric shape control, blank control). No difference in the amount of money donated was found between any of the eye image conditions. These results suggest that watching eyes, whether stylized or photographic, are not effective at eliciting prosocial behavior via charitable giving. However, further study contrasting single and paired eye imagery, and exploration of the effects of stylized eye imagery in deterring littering and crime, would be beneficial.

Keywords
eye images, watching eyes effect, prosociality, field experiments

Introduction
There is considerable current debate about the role of watching eyes in eliciting prosocial behavior. Some previous research has found that images of watching eyes encourage prosocial and normative behavior in a variety of field settings, such as by increasing charitable donations (Fathi, Bateson, & Nettle, 2014; Oda & Ichihashi, 2016; Powell, Roberts, & Nettle, 2012), and honor-system payments (Bateson, Nettle, & Roberts, 2006), and decreasing littering (Bateson, Callow, Holmes, Roche, & Nettle, 2013; Bateson, Robinson, Abayomi-Cole, Greenlees, O’Connor, & Nettle, 2015; Ernest-Jones, Nettle, & Bateson, 2011), and bicycle theft (Nettle, Nott, & Bateson, 2012). However, other studies have found no effects of images of watching eyes on human behavior (e.g., Manesi & Pollet, 2017; Matsugasaki, Tsukamoto, & Ohtsubo, 2015; Raihani & Bshary, 2012).

Many studies of the watching eyes effect have used photographs of human eyes (e.g., Bateson et al. 2006; Ernest-Jones et al. 2011; Nettle et al. 2012). However, others have used stylized eye images, such as the Eye of Horus, which was also effective in promoting prosocial behavior (e.g., Haley & Fessler, 2005; Oda, Niwa, Honma, & Hiraishi, 2011; Sparks & Barclay, 2013). Various stylized eye images have been used throughout human history, mainly as a sign to ward off dangerous or harmful intentions (Bohigian, 1997; Potts, 2015). These symbols have been used on jewelry, upholstery, clothing and art. Culturally significant stylized eye imagery includes the evil eye, the eye of Horus, and the all-seeing eye, which have been used across many cultures for perceived protection and defense (Bohigian, 1997; Lykiardopoulous, 1981; Potts, 2015).

Despite previous research having utilized either stylized or photographic eye images, no study, to our knowledge, has compared the effects of stylized and photographic eyes in eliciting prosocial behavior. In this study, we determined the efficacy of stylized and photographic eye images in increasing prosocial behavior as measured by charitable giving in a ‘free cakes’ field experiment.

Methods

Study site and subjects
The study was performed at Hartpury College, Gloucestershire, UK using four different locations around the university campus (the library, the canteen, the assignment submission area and the student services area). The four locations were selected in order to ensure maximum exposure and through-flow of foot traffic. The participants were staff, students and visitors to the site. Participation was voluntary and participants could choose whether to take a cake, whether to donate to the charity and, if doing so, how much to donate. Participants were not identified and were unaware that they were taking part in the study. The study abided by the guidelines of the Institutional Research Ethics Committee.

Procedure
The study took place over three weeks (Monday through Thursday per week) during the academic term. Six eye image conditions were used in the study; three stylized eye images (evil eye, eye of Horus, all-seeing eye), one photographic eye image (human eye image) and two control images (geometric shape control, blank control) (Figure 1). All images were the same size (borders of image: 55 mm x 55 mm), with the eye being ‘life size’
Stylized eye images do not increase charitable donation

Lennon et al. LEBS Vol. 8 No.2 (2017) 28-31
Stylized eye images do not increase charitable donation

the money donated to the number of cakes taken, ii) the amount of money donated, and iii) the number of cakes taken, between the six eye image conditions. In addition, Mann-Whitney U tests were performed to determine if there was a difference in these measures between an eye-condition (combining evil eye, eye of Horus, all-seeing eye, and human eye) and a control condition (combining geometric image and blank image). Kruskall-Wallis ANOVAs were also used to evaluate whether there were any effects of day of the week or location upon the amount of money donated. The statistical significance level was accepted at $p < 0.05$. All analyses were carried out in SPSS (version 24.0, SPSS Inc. 2016).

Results
There was no significant difference found in the ratio of the money donated to the number of cakes taken ($\chi^2(5) = 3.177, p = .673$), the amount of money donated per condition ($\chi^2(5) = 3.169, p = .674$) nor the number of cakes taken per eye image condition ($\chi^2(5) = 2.445, p = .785$). No significant differences were also found between the eye-condition and control condition in the ratio of the money donated to the number of cakes taken ($U = 218.000, n_1 = 32, n_2 = 16, p = .406$), the amount of money donated per condition ($U = 208.500, n_1 = 32, n_2 = 16, p = .299$) nor the number of cakes taken per condition ($U = 220.000, n_1 = 32, n_2 = 16, p = .427$). There was no effect of day of the week ($\chi^2(3) = 6.201, p = .102$) or location ($\chi^2(3) = 6.777, p = .079$) on the amount of money donated. Throughout the study, 1348 cakes were taken and the total value of donations was £172.56 (Evil Eye = £21.83; 225 cakes taken; Eye of Horus = £32.92; 254 cakes taken; All Seeing Eye = £47.31; 225 cakes taken; Human Eye = £29.57; 230 cakes taken; Geometric Pattern Control = £22.64; 240 cakes taken; Blank control = £18.29; 174 cakes taken).

Data analysis
For each of the six eye image conditions, the amount of money donated and the number of cakes taken per day was recorded. For each of the eight days for each image condition, the ratio of money donated to the number of cakes taken was then calculated. Kruskal-Wallis ANOVAs were conducted to look for differences in i) the ratio of the money donated to the number of cakes taken, ii) the amount of money donated, and iii) the number of cakes taken, between the six eye image conditions. In addition, Mann-Whitney U tests were performed to determine if there was a difference in these measures between an eye-condition (combining evil eye, eye of Horus, all-seeing eye, and human eye) and a control condition (combining geometric image and blank image). Kruskall-Wallis ANOVAs were also used to evaluate whether there were any effects of day of the week or location upon the amount of money donated. The statistical significance level was accepted at $p < 0.05$. All analyses were carried out in SPSS (version 24.0, SPSS Inc. 2016).

Results
There was no significant difference found in the ratio of the money donated to the number of cakes taken ($\chi^2(5) = 3.177, p = .673$), the amount of money donated per condition ($\chi^2(5) = 3.169, p = .674$) nor the number of cakes taken per eye image condition ($\chi^2(5) = 2.445, p = .785$). No significant differences were also found between the eye-condition and control condition in the ratio of the money donated to the number of cakes taken ($U = 218.000, n_1 = 32, n_2 = 16, p = .406$), the amount of money donated per condition ($U = 208.500, n_1 = 32, n_2 = 16, p = .299$) nor the number of cakes taken per condition ($U = 220.000, n_1 = 32, n_2 = 16, p = .427$). There was no effect of day of the week ($\chi^2(3) = 6.201, p = .102$) or location ($\chi^2(3) = 6.777, p = .079$) on the amount of money donated. Throughout the study, 1348 cakes were taken and the total value of donations was £172.56 (Evil Eye = £21.83; 225 cakes taken; Eye of Horus = £32.92; 254 cakes taken; All Seeing Eye = £47.31; 225 cakes taken; Human Eye = £29.57; 230 cakes taken; Geometric Pattern Control = £22.64; 240 cakes taken; Blank control = £18.29; 174 cakes taken).
Discussion
In this study, we aimed to determine the efficacy of stylized and photographic eye images in increasing prosocial behavior as measured by charitable giving in a field experiment. There was no difference in the donations made between any of the eye image conditions. These results do not suggest that stylized eyes are effective at eliciting prosocial behavior, though neither do they suggest that photographic images of eyes are any more efficacious. These results are somewhat surprising, considering previous work where stylized eyes were found to promote prosocial behavior (e.g., Haley & Fessler, 2005; Oda et al. 2011; Sparks & Barclay, 2013), in addition to the effects of watching eyes seen in previous charitable donation studies (e.g., Oda & Ichihashi, 2016; Powell et al. 2012). The findings of this study do however coincide with a recent meta-analysis suggesting a lack of effect of watching eye imagery on generosity (Northover, Pedersen, Cohen, & Andrews, 2017).

Eye imagery has been suggested as potentially being less effective at enhancing costly forms of prosociality that lack clear benefits to the actor, such as returning lost letters (Manesi & Pollet, 2017). The charitable donations anticipated in this study are not overly costly in terms of time or expense and, in addition, donation to charity is associated with reputational benefits (Milinski, Semmann, & Krambeck, 2002). It is difficult to therefore explain the findings in this context. However, another potential explanation for the lack of effect may relate to the eye symbols used. Eye imagery is culturally important, however, these eye symbols are frequently used in a protective context (Bohigian, 1997; Lykiardopulos, 1981; Potts, 2015). Potentially, these stylized eyes may be more effective in a defensive context, such as by protecting property, via encouraging adherence to laws or reducing criminal activity, rather than in encouraging prosocial behavior via charitable donations. It is worth noting though that if this was the case, we may have expected enhanced donations within the photographic eye condition. However, this was not found to be any more effective than the other conditions. This is despite photographic images having proven effective in promoting prosocial behavior in other studies (e.g., Bateson et al. 2006; Nettle et al. 2012).

A further explanation to consider is that using single eye images may have not been effective. Research in non-human animals has suggested that pairness of eye-like stimuli may be biologically significant (Jones, 1980; Mukherjee & Kodandaramaiah, 2015). Paired eye-like stimuli have been found to be more effective in predator deterrence than single eyespots (e.g., Jones, 1980; Mukherjee & Kodandaramaiah, 2015). Previous work into the effects of watching eyes, whether using realistic or stylized eyes, has tended to use paired cues (e.g., Bateson et al. 2006; Manesi & Pollet, 2017; Oda & Ichihashi, 2016; Powell et al. 2012). Whilst use of single eye images coincides with the cultural display of eye imagery (e.g., in evil eye amulets; use of all-seeing eye), using images of single eyes could have rendered our stimuli less biologically significant and may have impacted on their ability to elicit prosocial behavior. The size of the eye images used may also have been important. The eye images used in the study were life-size, however the eye images used in other studies were often larger (e.g., Manesi & Pollet, 2007; Nettle et al. 2012; Oda et al. 2011). Whilst similar sized images to those used in this study have elicited charitable giving behavior in previous work (e.g., Oda & Ichihashi, 2016; Powell et al. 2012), the size of the watching eye stimuli may impact on the salience of the cue and is a point to consider in future studies of this nature.

In conclusion, the findings of our study do not suggest that either stylized or photographic eye images elicit prosocial behavior in this charitable donation context. However, further study using paired and single eye imagery, and of stylized eye imagery in other prosocial contexts (such as littering and crime deterrence) would be beneficial.

Acknowledgement
We would like to thank the anonymous reviewer and Grace Carroll for their valuable comments on the manuscript and local supermarkets for donating the cakes used in the study.

References
Bateson, M., Callow, L., Holmes, J. R., Roche, M. L. R., & Nettle, D. (2013). Do images of ‘watching eyes’ induce behaviour that is more pro-social or more normative? A field experiment on littering. PloS ONE, 8, e82055. (doi: 10.1371/journal.pone.0082055)

Nettle, D., Nott, K., & Bateson, M. (2012). ‘Cycle thieves, we are watching you’: impact of a simple signage intervention against bicycle theft. PloS ONE, 7, e51738. (doi: 10.1371/journal.pone.0051738)

