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Previous cultural analyses argue that a random-
copying model that is analogous to genetic drift in 
population genetics explains a variety of real-world 
datasets. Few empirical investigations have been 
done on how cultural traits are actually generated 
and selected. We present experimental data that 
matches random-copying simulation very well. In our 
experiment, designers copied what they considered 
well designed, and eliminated the poor ones, and 
designed several novel drawings by different design 
strategies in a cultural transmission network. What 
were conventionally thought useful for design to 
prosper, such as practice, exposure to other design 
and experience in design, do not quite contribute to 
its prosperity. We suggest that some design’s creation 
processes as well as its market may be value-neutral.
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Introduction
Previous studies have shown that simple random copying 
model represents various real-world cultural datasets, 
such as pop chart (Bentley, Lipo, Herzog, & Hahn, 2007; 
Salganik, Dodds, & Watts, 2006), patent and paper 
citations (Bentley, Hahn, & Shennan, 2004; Simkin & 
Roychowdhury, 2003), pottery types and decorations 
(Bentley et al., 2004; Shennan & Wilkinson, 2001), and 
first names (Hahn & Bentley, 2003). These studies suggest 
that no selection is needed to explain diverse variation of 
successful and non-successful cultural traits.

In the neutral theory of molecular evolution, gene 
frequencies changes only by chance and simply due 
to sampling error. We show that neutral model also 
represents a simple experimental design process, in which 
participants eliminate the former time-step line drawings 
and int roduce the same amount of novel drawings 
in a cultural transmission network, that is similar to 
transmission chain practiced by Tamariz & Kirby (2014).

By comparing cumulative frequency of drawing to 
that generated by random drift simulation very close to the 

condition of the experiment, we show that these two match 
very well. For mutation rate μ ≪ 1, previous studies show 
that real-world cultural variants and simulation datasets 
obey power-law distribution, 

p(x) ∝ x-α.				           (1)

However, it is known that the pattern breaks down 
for large μ (Bentley et al., 2004). To make matters worse, 
finite size effect bends off the extreme lower tail. Hence, 
along with basic power-law distribution, we fitted power-
law with exponential cut-off, 

p(x) ∝ x-αe-λx, 				           (2)

which is characterized by power-law behaviour for x  
≪ λ–1 and exponential distribution behaviour for x ≫ λ–1.

Methods
Participants
Forty-two volunteers (age M = 23.6, SD = 6.27, range = 
18–57 years, twenty-six of them were design students) 
par t icipated, each represent ing one t ime-step (t). 
Participants with and without design experience were 
interlaced in terms of time-step, to better represent 
actual design processes, in which designs are produced 
and evaluated by both professional and non-professional 
people, e.g., Wikipedia. Each participant designed six 
novel drawings, resulting in n = 252 unique drawings in 
total. 

Procedure
Design criteria are a list of purposes that design is 
expected to meet. Because our main interest was not in 
the effect of specific design criteria, they could have been 
anything. In our experiment, we chose the following four, 
to empower any participants including those who had 
no experience in design at all: to design drawings that 
they like; easy to copy; easy to remember; and stand out. 
Participants had to treat these criteria equally. Letters were 
prohibited to draw because it is known to be tenacious in 
transmission chain (Tamariz & Kirby, 2014). Filling was 
also prohibited because the filled drawings were expected 
to stand out from the other drawings, while hatching was 
allowed. These criteria and restrictions were informed to 
the participants before drawing. The initial drawings were 
drawn by the authors.

Drawing process was done in the following order. On 
a draft sheet, a participant was asked to design total of six 
unique drawings in accordance with six different drawing 
strategies. When all were drawn on the draft sheet, the 
participant was asked to trace these six drawings to a sheet 
for a clean copy. Along with these, participants copied ten 
drawings from previous time-step, on an A4 white paper 
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Crow, 1964) was used to simulate random copying model 
with similar parameters as the experiment. In the agent-
based model simulation, unique cultural traits represented 
by arbitrarily defined numerical variants are assigned 
to a population of N individual agents. Each agent then 
iteratively copies from the previous time-step randomly, 
with probability (1 – μ), or innovates a novel trait, with 
probability μ (see Hahn & Bentley, 2003; Mesoudi & 
Lycett, 2009 for details). To match the conditions to our 
experiment in the lab, we ran simulations for T = 42 time-
steps with a population of N = 16 agents. Simulation was 
run for 100 times each.

Counting the frequency of drawing
While there is a clear-cut difference between copy 
and mutation in random drift simulation, real world 
design process as well as our transmission network has 
blurry distinction. It is not straightforward to determine 
which mutations are actually novel and which are not. 
To overcome this, we defined frequency of design that 
corresponds to arbitrarily-assigned degree of influence on 
descents, or contribution ratio, V (0 ≤ V ≤ 1). 

When V = 0, even a slightest modification of design is 
considered innovative. No parent-offspring relationships is 
taken into account. The frequency of design is determined 
simply by its cumulative number of copies throughout the 
experiment. Let us call this base frequency f. For 0 < V < 
1, the parents split their descendants’ frequency equally. 
In our case, an Impr.P drawing (which has one parent) 
acquires only (1 – V ) of its cumulative frequency f. The 
rest, Vf, is given to its parent. Similarly, Hybr.P drawing 
(two parents) gives Vf/2 to each of its two parents. When V 
= 1, This way we get frequency of a design X as

FV (X) =

{
f(X) (pX = 0)
(1− V )f(X) (pX = 1, 2, ...)

	        (3)

where pX is the number of parents of X, and f (X ) is the 
frequency 

f(X) = f0(X) + V
l∑

k=1

f(xk)

pxk

 	 	        (4)

where f0(X ) is the number of time-steps X has survived, x1, 
x2, ..., x i are the direct descendants of X (if available). Note 
that  ≠ 0 because xk has at least one parent, X. This way 
the sum of F(X ) is a constant for any V,

n∑

i=1

FV (Xi) = N × T 			          (5)

where n is the total number of designs generated through 
total of T time-steps in N individuals. 

In our analysis, we considered three scenarios: V = 0, 
0.5, and 1. Corresponding mutation rates for simulation is 
μ = 6/16, 5/16, and 4/16. As V varies, frequency also varies 
greatly. As can be seen in Figure 2, individual J in time-
step t = 1, J1, had survived through three time-steps, thus 
F0(J1) = 3, and similarly, F0(L2) = 13, while F1(J1) = 20 
and F1(L2) = 0. 

Analysis
Discrete power-law distr ibution f its and tests were 

,

with sixteen 40 mm square drawing fields printed on, 
with 1.6 mm-thick black ballpoint pen (see Figure 1 for 
example). 

The clean copy was subsequently handed to the next 
participant. This process was repeated for the total time-
steps of forty-two times. 

25

Drawing strategies
The six drawing st rategies consist of two copying 
strategies (“Impr.P” and “Hybr.P”) and four innovation 
strategies (“Pre,” “Pre.P,” “Post” and “Post.P”). For 
drawings with the suffix “.P,” the drawer drew at least 
one practice drawings until s/he was satisfied with the 
result, and chose the best one out of them. The drawer was 
allowed to pick whichever trial.

After the instruction, the research participant drew the 
first drawing, Pre, without any practices. Then the drawer 
was prompted to draw Pre.P, with practice as explained 
above. After that, the drawer received the former time-
step’s clean copy sheet and chose the best two drawings, 
as well as the worst six. Based on the best drawing, the 
drawer was asked to draw the draft of third drawing, Impr.
P, improving the design even more. Then the drawer was 
asked to draw Hybr.P, a combination of the best and the 
second best drawing, hybridizing them, cherry-picking 
the good qualities that made the drawers choose them 
as the best two. This procedure was adopted to mimic 
the procedure of the random copying model setting of 
the simulation, in which a certain generation’s variants 
have slight chance of copying the same variant from the 
previous time-step. Post drawing was drawn only once, 
just like Pre. The last drawing, Post.P, was with practice 
just like Pre.P. After drawing them, the drawer proceeded 
to trace the predecessor’s drawings except the worst six. 
These vacant six fields were replaced by the novel six 
drawings. 

Simulation
An R script equivalent to the infinite allele model for a 
single-locus, multiple neutral allele system (Kimura & 

 
Figure 1. An example of a sheet, t = 18. X-marks on 
the upper-right corners indicate that the drawings were 
eliminated f rom the populat ion by the subsequent 
participant. 1 (on F18) and 2 (on G18) indicate the drawings 
were chosen as the best, and the drawing was chosen as 
the second best, respectively. 

,

,
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Results and Discussion
As shown in Figure 3–[A] and [B], experimental result 
showed good fit to simulation outcome. On the other 
hand, Goodness-of-fit tests did not convince power-law 
was a plausible model either for simulation or experiment 
results. The p-values were below 0.1 for all Vs and most 
simulation runs (97, 96, and 88 runs for V = 0, 0.5, and 
1, respectively. In Goodness-of-fit test, the high p-value 
suggests power-law is a plausible fit). However, likelihood-
ratio tests showed that power-law with cut-off was good 
fit for experiment results for any Vs (p < 0.01, this time 
the smaller p-value indicates power-law with cut-off is 
better fit than basic power-law), as well as all random 
drift simulations (p < 0.05 for all runs). As can be seen 
in Figure 3–[B], the match between random drift model 
and experiment result became better as V got close to 1. In 
overall, the statistical support for the power-law hypothesis 
is poor both for experimental and simulation results, while 
power-law with cut-off is clearly favoured over the basic 
power-law, and the parameters of them match very well. 

Contrary to our conventional understandings, Poisson 
regression revealed almost no effects of the following 
factors (Figure 3–[C]): educational background, repetitive 
practice, and combining the previous works. Time-step and 
exposure to others’ drawings had negative effect. The only 
clear positive effect was found on improving the previous 
works, estimated to multiply frequency by 1.70 (95% CI: 
1.26–2.32) for V = 0, and 1.014 (95% CI: 0.73–1.42) for V = 
0.5 (note that if improving had no effect on frequency, the 
rate would have been around 0.5 because frequencies Impr.
P acquired is multiplied by 0.5 for V = 0.5, as we defined 
so). 

The effect of improving, however, was not even close 
to the random effects of individual designs. The largest 
random effects of an individual design for each of the 
V-values were estimated to multiply frequency by 3.88 
(95% CI: 1.97–7.46) times, 4.46 (95% CI: 2.56–7.24) times, 
and 14.2 (95% CI: 9.33-21.83) times for V = 0, 0.5, and 1, 
respectively.

It is shown that markets for artif icially designed 
cultural traits are often random and therefore unpredictable 
(e.g., Salganik et al., 2006). Our result extends this 
understanding that some design creation processes are, in 
fact, value-neutral: the main cause of a few very successful 
design in real-world may also be explained by simple 
model of random drift. Heavily depending on designers’ 
and consumers’ subjective preferences, many of our design 
creation and selection might not affect the value of design 
ideas as much as we have typically thought.

Our research was entirely executed in the laboratory. It 
is highly possible that some of the actual design processes 
are not value-neutral. Nonetheless, we think that this 
method is one of the few feasible approaches to tackle yet-
to-be-discovered mechanisms of design creation and its 
selection. 
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Figure 3. Columns from left to right: V = 0, 0.5, 1. Row [A]: Power-law distributions of the experiment (black) 
compared to outcome of simulation (light blue). Complementary cumulative distribution function P(x) value on the 
y-axis, frequency of a drawing on the x-axis. Since the discrete power-law fit only accepts integers, frequencies for V > 
0 were rounded. Maximum likelihood power law (line) and that with exponential cut-off (thick curve) along with their 
parameters are also plotted. Row [B]: Maximum likelihood parameters of power-law with cut-off. Exponent αcutoff on 
y-axis, rate λ-1 on x-axis. Simulation runs with dots, asterisk for experiment result. Colour corresponds to the exponent 
of basic power-law without cut-off. Row [C]: Estimated posterior distribution of coefficients for various parameters, 
with a point on median of the estimation. The line indicates 95% Bayesian confidence interval. Parameters from top to 
bottom: the effect of educational background (1 if the drawer is a design student), time-step (divided by total time-steps), 
prototyping (scaled to the effect of 10 prototypings), improving (1 for Impr.P), combining (1 for Hybr.P), and exposure to 
previous time-step’s drawings (1 for Impr.P, Hybr.P, Post, and Post.P).
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