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The existence of cooperation demands explanation 
in terms of natural selection. Prisoner’s dilemma is 
a framework often used when studying the evolution 
of cooperation. In prisoner’s dilemma, most previous 
studies consider the situation wherein an individual 
who cooperates will give an opponent an amount b at 
a personal cost of c, where b > c > 0 while an individ-
ual who defects will give nothing. This model setting 
is convenient; however, previous studies have not 
considered the case wherein a different player has 
a different benefit and different cost while in reality, 
it is natural to consider that a different player has a 
different benefit and different cost. Here, we raise the 
following question: Taking that a different individual 
has a different benefit and a different cost into con-
sideration, what strategy is likely to evolve? In this 
paper, we focus on the direct reciprocity and analyze 
the case wherein each player follows the same prob-
ability (or reaction) function and but different players 
have a different benefit and cost. We obtain the con-
dition for the evolution in the general case. And in 
addition, we reveal that under a specific condition as 
the interaction repeats longer and the benefit-to-cost 
ratio is larger and the cooperating probability is more 
sensitive to the benefit the opponent provides, the es-
tablishment of cooperation is more likely.
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Introduction
The existence of cooperation demands explanation in 
terms of natural selection (Hamilton, 1964; Trivers, 
1971). Prisoner’s dilemma is a framework often used 
when studying the evolution of cooperation. In prisoner’s 

dilemma, most previous studies consider the situation 
wherein an individual who cooperates will give an amount 
b to an opponent while paying a personal cost of c where 
b > c > 0 while an individual who defects will not give 
anything. 

This model set t ing is convenient; however, in 
reality, the cooperation level is continuous (Doebeli, 
Hauert, & Killingback, 2004; Killingback, Doebeli, & 
Knowlton, 1999; Nakamaru & Dieckmann, 2009; Shimao 
& Nakamaru, 2013; Wahl & Nowak, 1999a,b). Some 
previous studies have made a research on the evolution of 
cooperation in the case wherein individuals can cooperate 
continuously.

However, these previous studies considered the 
situation wherein a different individual has the same 
benefit cost function, while considering the situation 
wherein a different individual has a different benefit and a 
different cost is reasonable.

This paper considers the case wherein each player 
follows the same probability (or reaction) function and but 
different players have a different benefit and cost. Here, 
we raise the following question: Taking that a different 
individual has a different benefit and a different cost 
into consideration, what strategy is likely to evolve? We 
focus on the direct reciprocity (see Kurokawa, 2016a,b,c; 
Kurokawa, in press; Kurokawa & Ihara, 2009; Kurokawa, 
Wakano, & Ihara, 2010; Trivers, 1971 for papers on direct 
reciprocity) in this paper.

Model
Assume that individuals are paired randomly and interact, 
and that age structure is absent (see Li, Kurokawa, Giaimo, 
& Traulsen, 2016 for a study dealing with age structured 
population). We consider the repeated prisoner’s dilemma 
game in which two individuals have to either cooperate or 
defect in each round. The probability of the individuals’ 
interacting over t times in a given pair is wt, where 0 < w 
< 1 holds true. This assumption leads to that the expected 
number of interactions is given as 1/(1 − w). 

We consider strategies given by (c, b, f (l), μ). If a 
receiver gets an amount b, where b > 0, while paying a cost 
c, where c > 0. And let f (l) be the probability to cooperate 
in the following round when the opponent gave benefit l 
to the focal player in the previous round, where 0 ≤ f (l) 
≤ 1 (see e.g., Roberts & Sherratt, 1998; Wahl & Nowak, 
1999a,b for papers studying the strategy which decided 
what to do next based on the benefit the opponent provided 
in the previous round). Note that (c, b, f (l), μ) cooperates 
with probability f (0) in the following round when the 
opponent defected in the previous round. Even when (c, 
b, f (l), μ) attempts to cooperate, (c, b, f (l), μ) fails to do 
so with probability μ, where 0 ≤ μ < 1 (Kurokawa, 2016c; 
May, 1987). (c, b, f (l), μ) player always tries to cooperate 
in the first round. This can be regarded as an extension of 
earlier models (e.g., Axelrod & Hamilton, 1981).
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Result
Here, we consider the game between (c1, b1, f (l), 0) and (c2, 
b2, f (l), 0). After algebraic calculation (see Appendix A in 
supplementary file for the detailed calculation), it is shown 
that the condition for (c1, b1, f (l), 0) to be stable against the 
invasion by (c2, b2, f (l), 0) is given as

(1 − m1m2 w
2)c1 − (1 − m1m1w

2)c2 < w(m1− m2)b1,
where m1 ≡ f (b1) − f (0), m2 ≡ f (b2) − f (0).

It can be shown that it is likely that (1) is violated when 
c2 is small, which indicates that the strategy with a small 
cost is likely to invade. 

This is the condition in the general case. In the 
following three sections, we consider special cases and we 
investigate what strategy is successful.

Special case 1 (the case wherein c is independent of 
strategies)
In this section, we consider the case wherein cost is 
independent of strategies. Substituting c1 = c2 into (1), (1) 
becomes

(b1 − m1wc1)( f (b1) − f (b2)) > 0.
Here, we assume that b1 > c1 is met. Under this 

assumption, (2) becomes
f (b1) > f (b2).

If a strategy has the benefit (b) whose f (b) is larger than 
f (b) of the invasion strategy, the resident strategy (c1, b1, 
f (l), 0) is evolutionarily stable against the invasion by (c2, 
b2, f (l), 0). Since inequality (3) does not contain f (0) this 
result is not affected by the value of f (0), which indicates 
that the response to those who defected in the previous 
round does not affect the outcome of the evolution.

Special case 2 (the case wherein f (b1) = f (b2))
In this section, we consider the case wherein f (b1) = f (b2). 
In this situation, a player’s probability of cooperating in 
the next round depends only qualitatively on whether an 
opponent player cooperates at all, rather than quantitatively 
on how much the player provides. Substituting  f (b1) = f (b2) 
into (1), (1) becomes

c1 < c2.
This means that if the invasion strategy has a larger 

cost than the resident strategy, then the invasion strategy 
has a lower payoff than the resident strategy and fails to 
invade. On the other hand, if the invasion strategy has a 
smaller cost than the resident strategy, then the invasion 
strategy has a higher payoff than the resident strategy 
and succeeds in invading. The ultimate outcome of the 
evolution is that a strategy which pays little cost to the 
opponent spreads over the population (see also Doebeli & 
Knowlton, 1998). We also note that b1 = b2 is a sufficient 
condition for f (b1) = f (b2); hence, the condition for (c1, b1, f 
(l), 0) to be stable against the invasion by (c2, b2, f (l), 0) in 
the case wherein b1 = b2 is met is given as (4).

Special case 3 (the case wherein m1/b1 = m2/b2 = t is 
satisfied, and there exist only strategies which satisfy 
b1/c1 = b2/c2 = k)
In this section, we consider the case wherein m1/b1 = m2/b2 
= t (where t ≥ 0) is satisfied, and there exist only strategies 
which satisfy b1/c1 = b2/c2 = k  (where k > 1). 

If t > 0 is met, using these equations, (1) becomes 
(c1 − c2)(c1 − c*) > 0,

where c* = 1/(wk2t).

This means that if the cost the resident strategy has 
is smaller than the critical value (c*), the strategy with 
a larger cost cannot invade the resident strategy, while 
the strategy with a smaller cost can invade the resident 
strategy. On the other hand, if the cost the resident strategy 
has is larger than the critical value (c*), the strategy with 
a smaller cost cannot invade the resident strategy, while 
the strategy with a larger cost can invade the resident 
strategy. The critical value is small when the parameters (w, 
k, and t) are large, which indicates that as the interaction 
repeats longer and the benefit-to-cost ratio is larger and the 
cooperating probability is more sensitive to the benefit the 
opponent provides, the basin of attraction for cooperation 
is larger and the establishment of cooperation is more 
likely. This result is not affected by the value of f (0), 
which indicates that the response to those who defected 
in the previous round does not affect the outcome of the 
evolution. However, in either way, in order to make the 
initial evolution of cooperation possible, some mechanism 
must be required.

Figure 1 illustrates the evolution of strategies. The 
parameters (c and b) are indexed, respectively, on the 
horizontal and vertical axes. The circle indicates unstable 
internal equilibrium point. If the state is at the lower left 
than the unstable internal equilibrium point, the state goes 
to lower left. On the contrary, if the state is at the upper 
right than the unstable internal equilibrium point, the state 
goes to upper right.

In the case wherein t = 0 is met, f (b) is independent of 
strategies and we dealt this case in special case 2. Hence, 
please see special case 2.

Discussion
This paper analyzes the case wherein each player follows 
the same probability (or reaction) function and but 
different players have a different benefit and cost (i.e., 
cost and benefit are not exogenous). And we obtained the 
condition for the evolution of strategies in the general 
model. In addition, we consider three specific cases.

Special case 3 considers the case wherein the cost 
(the benefit) is various while the benefit-to-cost ratio is 
constant, irrespective of cost. On the other hand, there are 
previous studies which consider the case wherein players 
are error-prone (e.g., Kurokawa, 2016c; May, 1987). When 
taking an average over long time, the effect of strategies 
whose benefit is smaller on their payoff (fitness) may be 
similar with the effect of strategies who fails to cooperate 

Figure 1. Strategy evolution.
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with more probability on their payoff (fitness). Are these 
two topics qualitatively the same? It can be shown that 
these two topics are qualitatively the same. Please see 
Appendix B for the detailed discussion.

Special case 3 examines the case wherein the 
benefit-to-cost ratio is constant, irrespective of cost. 
On the contrary, the benef it-to-cost ratio decreases 
as the cost increases in some animals (e.g., Corcorax 
melanorhamphos) (Le Galliard, Ferrière, & Dieckmann, 
2003). In such cases, what strategy is likely to evolve? 
Further study on this issue is needed.

S. Kurokawa (unpublished data) considered the 
strategy which has revealed that strategies which cooperate 
more when the actor cooperated in the previous round than 
when the actor defected in the previous round (strategies 
with stubbornness) are more successful. On the contrary, 
Killingback & Doebeli (2002) considered the payoff-based 
strategies (strategies with contra-stubbornness), which 
cooperate more when the actor defected in the previous 
round than when the actor cooperated in the previous 
round and stated that such a payoff-based strategy is 
beneficial for its evolution. Thus, some previous studies 
use the information about what the actor did in the 
previous round. On the other hand, the strategy in this 
paper does not use the information about what the actor did 
in the previous round. It might be interesting to examine 
the strategy which refers to the actor’s past move. Further 
study on this issue is required.

This paper only considers the interaction by two 
individuals. However, some animals including humans 
interact within a group consisting of more than two 
individuals. In order to analyze such a group-wise 
interaction, we have to extend this two player games 
to n-player games (Deng, Li, Kurokawa, & Chu, 2012; 
Kurokawa & Ihara, 2009, 2013; Kurokawa et al., 2010). 
Further study on this issue is needed.
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