Introduction

It has also been known that the disturbance mechanism, which involves imperfect information owing to cognitive capacity limitations (i.e., people occasionally overlook the opponent’s behavior), can prevent reciprocity from evolving (Bowles & Gintis, 2011). Reciprocity is a mechanism in which cooperators respond to their opponent’s behavior by switching their own behavior, thus helping the cooperation to evolve. Therefore, when information about the opponent’s behavior is somehow blocked, reciprocity does not function well. In fact, it has been shown that reciprocity is less likely to evolve when information is imperfect than when information is perfect.

However, this argument on the likelihood of reciprocity under conditions of perfect and imperfect information is based on the assumption that those who attempt to cooperate always succeed in doing so. In reality, errors in behavior can occur (May, 1987). All animals, including humans, are prone to error, with attempts at cooperation sometimes ending in failure. Moreover, previous studies (May, 1987) have revealed that the existence of mistakes can dramatically sway the evolution of reciprocity because in such cases, the opponent can react to the reciprocator’s mistakes as if it were a deliberate defection, starting a chain of defection that stops the current cooperation.

In this study, we consider the case in which mistakes can occur. In addition, we compare the simultaneous case in which both mistakes occur and information is imperfect with the case in which mistakes occur and information is perfect in order to examine whether imperfect information disturbs the evolution of reciprocity even when mistakes occur. It might be plausible that the evolution of reciprocity is more likely in the case of imperfect information than in the case of perfect information. We will further explain this supposition in the following sections.

In general, reciprocity is more likely to evolve if cooperation persists when two reciprocators meet each other and is more likely to evolve if cooperation stops when a reciprocator meets a defector. With this in mind, we will compare the simultaneous case in which both mistakes occur and information is imperfect with the case in which mistakes occur and information is perfect.

First, we consider the case where two reciprocators meet each other. If information is imperfect and each reciprocator sometimes or always attempts to cooperate even when there is no access to information, it is possible that even if one reciprocator mistakenly defects, the opponent reciprocator would cooperate because their imperfect information would leave the opponent reciprocator unaware of the mistake. Based on this, it seems plausible that cooperation will persist more often when information is imperfect than when information is perfect, thus contributing to a positive outcome in the evolution of reciprocity.

Second, we consider the case where a reciprocator meets a defector. When information is perfect, the reciprocator can stop cooperating with the defector.
The effect of imperfect information on reciprocity

However, when information is imperfect, the reciprocator will not know what the opponent defector does, thus causing the reciprocator to persist in cooperation and allowing the opponent to enjoy the exploitation of the reciprocator. This would lead to giving a negative outcome in the evolution of reciprocity.

Thus, it is seen that imperfect information has both positive and negative aspects for the evolution of reciprocity. It is consequently not obvious as to whether reciprocity is more likely to evolve when information is perfect or when it is imperfect, in considering the case in which mistakes can occur.

Furthermore, we raise one more question: are reciprocators more or less likely to evolve depending on whether they defect or cooperate when information is imperfect? We examine this in the following. On the one hand, when two reciprocators meet each other, reciprocators cooperate more if they cooperate when they have no information (i.e., when they are optimistic) than if they defect when they have no information (i.e., when they are pessimistic). Hence, reciprocator optimism has a positive effect on reciprocity evolution. On the other hand, when a reciprocator meets a defector, an optimistic reciprocator will be more likely to cooperate with the defector than a pessimistic reciprocator, which has an overall negative impact on reciprocity evolution. Thus, it is seen that having optimism has both positive and negative aspects for the evolution of reciprocity. It is consequently not obvious as to whether reciprocators are more or less likely to evolve depending on whether they defect or cooperate when information is imperfect.

In this article, we apply an evolutionarily stable strategy (ESS) analysis to obtain the condition under which cooperation evolves when mistakes occur. We then examine whether imperfect information makes the condition under which reciprocity evolves looser or more stringent. We also determine which reciprocators are more likely to evolve: pessimistic reciprocators who defect when they do not have information, or optimistic reciprocators who cooperate when they do not have information.

Model

Consider the iterated prisoner’s dilemma game in which individuals have to choose to either cooperate or defect in each round. We assume that individuals are paired at random. The probability that the individuals interact more than $t$ times in a given pair is $w$, where $0 < w < 1$. This assumption means that the expected number of interactions is $1 / (1 - w)$. Thus, as $w$ increases, so does the number of interactions per pair.

An individual who cooperates will give an opponent an amount $b$ at a personal cost of $c$, where $b > c > 0$. An individual who defects will give nothing. Here, we consider imperfect information. We use $e$, where $0 < e < 1$, to denote the probability that information is somehow blocked, i.e., that an individual cannot get access to the information about an opponent’s behavior. We also consider errors in behavior (May, 1987). Similarly, we use $\mu$, where $0 \leq \mu \leq 1$, to denote the probability that mistakes in behavior occur, i.e., that an individual who intends to cooperate fails to do so and defects.

Following earlier works (Axelrod & Hamilton, 1981), we consider two strategies: always defect (ALLD) and tit-for-tat (TFT). ALLD defects no matter what the opponent does. If access to information about the opponent’s behavior is available and the opponent cooperated in the previous round, TFT recognizes the opponent’s behavior as cooperative. If access to information is available, but the opponent defected in the previous round, TFT recognizes the opponent’s behavior as defective. If access to information about the opponent’s behavior in the previous round is not available, TFT regards the opponent’s behavior as cooperative with probability $a$ ($0 \leq a \leq 1$). In this case, the reciprocator can be seen to become more optimistic as $a$ increases. Moreover, in the first round, TFT attempts to cooperate with probability $1$, while in the following rounds, TFT attempts to cooperate if and only if TFT recognizes the opponent’s behavior as cooperative. However, TFT fails with probability $\mu$ to successfully cooperate even when TFT attempts to cooperate.

There is another type of mistake in the iterated prisoner’s dilemma game: the error in perception (Axelrod & Dion, 1988). Players mistakenly regard cooperation as defection when errors in perception occur. Following two cases are the same from the viewpoint of mathematical models: one case is that TFT mistakenly regards cooperation as defection with probability $e$, and the other case is that TFT cannot access the information about an opponent’s behavior with probability $\mu$ and TFT never attempts to cooperate when information is not available (i.e., $a = 0$). Hence, we can say that our model is a generalization of the previous model about perception errors.

We define $x$ as the expected number of total contributions by an individual playing TFT for a game in a group of two TFTs and define $y$ as the expected number of total contributions by an individual playing TFT in a group consisting of one TFT and one ALLD. Then, we have (see supplementary file for detailed calculation),

$$x = \frac{(1 - \mu)(1 - w + wea)}{(1 - w)(1 - w - ew)(1 - \mu)} \quad (1)$$

$$y = (1 - \mu) + \frac{wea(1 - \mu)}{1 - w} \quad (2)$$

Using these expected numbers, the respective payoffs $(b - c)x$ accumulated through a game are described as follows: TFT gets payoff $by$ in a game against TFT; and ALLD gets payoff $ax$ against TFT.

We can then determine the condition under which TFT is a strict ESS against an invasion of ALLD. The condition is that TFT’s payoff against itself is larger than TFT’s payoff against ALLD, given as $(b - c)x > by$. Using (1) and (2), this inequality becomes

$$\frac{c}{b} < \frac{w(1 - c)(1 - \mu)}{1 - \mu} \quad (3)$$

When $w(1 - \mu) > 0$ is satisfied, the right-hand side of (3) decreases as $e$ increases regardless of the value of $\mu$. This indicates that, even when considering errors in behavior, imperfect information will still disturb the evolution of cooperation. The condition under which reciprocity evolves is more stringent when information is imperfect.
The effect of imperfect information on reciprocity

Discussion

In this analysis, we obtained two results: one is that imperfect information disturbs the evolution of reciprocity even when there are errors in behavior; the other result is that the condition under which reciprocity evolves is not affected by whether a reciprocator cooperates or defects when there is no access to information.

There is another type of strategy in the iterated prisoner’s dilemma game called suspicious TFT, which does not cooperate in the first round and then follows the strategy of TFT after the first round (Boyd & Lorberbaum, 1987). A previous study (To, 1988), via analyses of suspicious TFT, has revealed that those who cooperate in the first round outperform those who do not. However, from this study, we cannot determine which is beneficial for the evolution of cooperation, cooperating in the first round or cooperating when information is not available, since information is not available in the first round. On the other hand, our study compares a specific TFT strategy that cooperates when information is not available, excluding the first round, with another specific TFT strategy that defects when information is not available, excluding the first round. In the result, our study has revealed that cooperating when information is not available (i.e., being optimistic) does not influence the likelihood of reciprocity evolution. Combining the data of the current study with that of the previous study, we can see that cooperating when information is not available is not beneficial for evolution; however, cooperating in the first round is beneficial for the evolution of cooperation. Behaving cooperatively when information is not available is not important. Behaving cooperatively in the first meeting is important.

This study also analyzed pairwise games to demonstrate that reciprocity is equally likely to evolve whether reciprocators are pessimistic or optimistic. It is of interest to extend this analysis to n-player games (Boyd & Richerson, 1988; Kurokawa & Ihara, 2009, 2013; Kurokawa, Wakano, & Ihara, 2010; Deng, Li, Kurokawa, & Chu, 2012), and the corresponding literature (S Kurokawa, Y Ihara, unpublished data) shows that in many-individual interactions, reciprocity is more likely to evolve when reciprocators are optimistic than when they are pessimistic. Thus, scale (in terms of the number of interacting individuals) has an effect on the evolution of optimism in theory. Any empirical studies that could show that animals (including humans) interacting in n-individual games are more optimistic than animals operating only in a pair-wise manner could be seen as an interesting confirmation of these theoretical studies.

Acknowledgement

The author thanks Tatsuya Sasaki for giving comments.

References